random sample is a big sample and convenience sample is small sample
Chat with our AI personalities
The main difference is that the way of selecting a sample Random sample purely on randomly selected sample,in random sample every objective has a an equal chance to get into sample but it may follow heterogeneous,to over come this problem we can use stratified Random Sample Here the difference is that random sample may follow heterogeneity and Stratified follows homogeneity
In a stratified sample, the sampling proportion is the same for each stratum. In a random sample it should be but, due to randomness, need not be.
Biased- (Not random) Unbiased-(Random) Example: (ubbiased) Woman takes random people to take a survey.
simple random sample is to select the sample in random method but systematic random sample is to select the sample in particular sequence (ie 1st 11th 21st 31st etc.)• Simple random sample requires that each individual is separately selected but systematic random sample does not selected separately.• In simple random sampling, for each k, each sample of size k has equal probability of being selected as a sample but it is not so in systematic random sampling.
Sometimes a population consists of a number of subsets (strata) such that members within any particular strata are alike while difference between strata are more than simply random variations. In such a case, the population can be split up into strata. Then a stratified random sample consists of simple random samples, with the same sampling proportion, taken within each stratum.