Below ^ denotes power.
8q^6r^3=(2q^2r)^3 denote as a^3 and find a=2q^2r
27s^6t^3=(3s^2t)^3 denote as b^3 and find b=3s^2t
Now 8q^6r^3+27s^6t^3=a^3+b^3
= (a+b)(a^2-ab+b^2) | substitute back
=(2q^2r+3s^2t)(4q^4r^2-6q^2rs^2t+9s^4t^2).
Notice (2q^2r)^2=4q^4r^2 (3s^2t)^2=9s^4t^2.
Hence 8q^6r^3+27s^6t^3=(2rq^2+3ts^2)(4r^2q^4-6rts^2t^2+9t^2s^4),
a=2q^2r and b=3s^2t.
Chat with our AI personalities