no
yes
Yes it can.
A triangle formed from three given side lengths can be either unique or non-unique depending on the specific lengths. If the triangle inequality theorem is satisfied (the sum of the lengths of any two sides must be greater than the length of the third side), then only one unique triangle can be formed. However, if the side lengths are such that they can form a degenerate triangle (where the sum of two sides equals the third), or if two sides are equal and the third side allows for more than one valid configuration (as in some cases with isosceles triangles), more than one triangle can potentially be formed. In general, for three distinct side lengths that satisfy the triangle inequality, only one triangle exists.
No. With the given side lengths the sum of the two shorter sides do not exceed the length of the longest side and would not meet to form a triangle
Yes because the sum of the smaller sides are greater than the longest side
That depends on what the side lengths are. Until the side lengths are known, the triangle can only be classified as a triangle.
No. The sum of any two lengths must be greater than the third length.
Yes, a triangle can have side lengths of 6, 8, and 9. To determine if these lengths can form a triangle, we can apply the triangle inequality theorem, which states that the sum of the lengths of any two sides must be greater than the length of the third side. In this case, 6 + 8 > 9, 6 + 9 > 8, and 8 + 9 > 6 all hold true, confirming that a triangle can indeed be formed with these side lengths.
To determine the number of triangles that can be formed with side lengths of 4m, 4m, and 7m, we can use the triangle inequality theorem. For a triangle to exist, the sum of the lengths of any two sides must be greater than the length of the third side. In this case, 4m + 4m = 8m, which is greater than 7m. Therefore, a triangle can be formed. Since all three sides are equal in length, this triangle is an equilateral triangle. So, there is only one triangle that can be formed with side lengths of 4m, 4m, and 7m.
To determine if you can make more than one triangle with a given set of side lengths, you can use the triangle inequality theorem, which states that the sum of the lengths of any two sides must be greater than the length of the remaining side. If the side lengths meet this condition, you can form a triangle, but if the side lengths are the same (like in the case of an equilateral triangle), only one unique triangle can be formed. Additionally, if the angles are not specified and the side lengths allow for different arrangements, multiple triangles may be possible.
Yes they can. Where the shortest sides added together are greater than the longest side, a triangle is formed.