Anything that radiates or can be made to radiate light - eg through burning.
The spectral lines from distant galaxies do not match those on Earth because of the Doppler effect, cosmic expansion, and differences in elements present in the galaxies. These factors cause the observed spectral lines to be shifted or altered compared to what we see on Earth.
Spectroscopy.
Beryllium spectral lines are specific wavelengths of light emitted or absorbed by beryllium atoms when they undergo transitions between energy levels. These spectral lines are unique to beryllium and can be used in spectroscopic analysis to identify the presence of beryllium in a sample.
Quasars have all kinds of spectral lines namely more energetic ones which makes them the brightest objects in the night sky.
The spectral lines of Sirius are blueshifted because the star is moving more or less toward us.
The detector in a spectrograph that records spectral lines photographically is a photographic plate or film. This photographic medium captures the light from the spectral lines dispersed by the spectrograph, allowing them to be recorded for analysis and interpretation.
A spectral line refers to the distinct lines in a spectrum that correspond to specific wavelengths of light emitted or absorbed by atoms or molecules. For example, astronomers analyze the spectral lines of distant stars to determine their composition and temperature.
I believe Helium was discovered by looking at the spectral lines of colour in sunlight. The two variants of helium found blocked out unique and previously unblocked areas of the spectrum. These spectral lines were unique to Helium and as such scientists knew it was unique.
Elements have several spectral lines and although some lines may be the same between different elements most lines are not and the whole spectrum for each element is indeed unique.
Yes. If the star is moving away from the Earth, its spectral lines will shift towards the red end of the spectrum. If it is moving towards the Earth, its spectral lines will shift towards the violet end of the spectrum. This is due to Doppler effect.
Carbon dioxide spectral lines are characterized by their unique pattern of absorption and emission of light at specific wavelengths. These lines are narrow and well-defined, indicating the presence of carbon dioxide molecules in a sample. The spectral lines of carbon dioxide are important for identifying and studying the gas in various scientific applications, such as atmospheric monitoring and spectroscopy.
Astronomers use the patterns of lines observed in stellar spectra to sort stars into a spectral class. Because a star’s temperature determines which absorption lines are present in its spectrum, these spectral classes are a measure of its surface temperature. There are seven standard spectral classes.