collecting numberical data finding the averges making estimates
Bowling averges are calculated by dividing total pins by number or games bowled.
It varies daily but averges for brokers in my area Aluminum cans $0.35/lb clean Aluminum $0.30-$0.40/lb and dirty Aluminum $0.08/lb
50/(200+50)=0.2= 20%
Simple enough for a tournament, you just divide all of your scores by the amount of games you play. If you bowl a league you can usually find your total pinfall somewhere on the league sheet. If you add your series for this week plus your total pinfall and divide by the total games including this week you get your average.Bowling averges are calculated by dividing total pins by number or games bowled.
1 2 3 4 4+1 4+2 4+3 4+4 4+4+1 4+4+2 4+4+3 4+4+4 4+4+4+1 4+4+4+2 4+4+4+3 4+4+4+4 4+4+4+4+1 4+4+4+4+2 4+4+4+4+3 4+4+4+4+4 4+4+4+4+4+1 4+4+4+4+4+2 4+4+4+4+4+3 4+4+4+4+4+4 4+4+4+4+4+4+1 4+4+4+4+4+4+2 4+4+4+4+4+4+3 4+4+4+4+4+4+4 4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+4+4+4+2 I hope this is the answer you search for! (because it took some time!)
26
1 = 4*4/(4*4) 2 = 4/4+4/4 3 = (4+4+4)/4 4 = (4-4)/4+4 5 = 4^(4-4)+4 6 = (4+4)/4+4 7 = 4+4-4/4 8 = 4+4+4-4 9 = 4/4+4+4 10 = (4*4+4!)/4 11 = (4+4!)/4+4 12 = (4-4/4)*4 13 = (4+4!+4!)/4 14 = 4!/4+4+4 15 = 4*4-4/4 16 = 4*4+4-4 17 = 4*4+4/4 18 = (4*4!-4!)/4 19 = 4!-(4+4/4) 20 = (4/4+4)*4 21 = 4!+4/4-4 22 = 4!-(4+4)/4 23 = 4!-4^(4-4) 24 = 4*4+4+4 25 = 4!+(4/4)^4 26 = 4!+4!/4-4 27 = 4!+4-4/4 28 = (4+4)*4-4 29 = 4/4+4!+4 30 = (4*4!+4!)/4 31 = (4+4!)/4+4! 32 = 4^4/(4+4) 33 = (4-.4)/.4+4! 34 = 4!/4+4+4! 35 = (4.4/.4)+4! 36 = (4+4)*4+4 37 = 4/.4+4+4! 38 = 44-4!/4 39 = (4*4-.4)/.4 40 = (4^4/4)-4! 41 = (4*4+.4)/.4 42 = 4!+4!-4!/4 43 = 44-4/4 44 = 4*4+4+4! 45 = (4!/4)!/(4*4) 46 = (4!-4)/.4 - 4 47 = 4!+4!-4/4 48 = (4*4-4)*4 49 = 4!+4!+4/4 50 = (4*4+4)/.4 51 = 4!/.4-4/.4 52 = 44+4+4 53 = 44+4/.4 54 = (4!/4)^4/4! 55 = (4!-.4)/.4-4 56 = 4!+4!+4+4 57 = 4/.4+4!+4! 58 = (4^4-4!)/4 59 = 4!/.4-4/4 60 = 4*4*4-4 61 = 4!/.4+4/4 62 = (4!+.4+.4)/.4 63 = (4^4-4)/4 64 = 4^(4-4/4) 65 = 4^4+4/4 66 = (4+4!)/.4-4 67 = (4+4!)/.4+4 68 = 4*4*4+4 69 = (4+4!-.4)/.4 70 = (4^4+4!)/4 71 = (4!+4.4)/.4 72 = (4-4/4)*4! 73 = (.4√4+.4)/.4 74 = (4+4!)/.4+4 75 = (4!/4+4!)/.4 76 = (4!-4)*4-4 77 = (4!-.4)/.4+4! 78 = (4!*.4+4!)/.4 79 = (.4√4-.4)/.4 80 = (4*4+4)*4 81 = (4/4-4)^4 82 = 4!/.4+4!+4 83 = (4!-.4)/.4+4! 84 = (4!-4)*4+4 85 = (4/.4+4!)/.4 86 = (4-.4)*4!-.4 87 = 4!*4-4/.4 88 = 4^4/4+4! 89 90 = (4!/4)!/(4+4) 91 92 = (4!-4/4)*4 93 94 = (4+4!)/.4 + 4! 95 = 4!*4-4/4 96 = 4!*4+4-4 97 = 4!*4+4/4 98 = (4!+.4)*4+.4 99 = (4!+4!-4)/.4 100 = 4*4/(.4*.4)
(4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4) ÷ 4 = 27
4 +4+4+4+4+4+4+4+4=40
Sure, using the number 4 four times, you can create the numbers 1 to 20 as follows: 1 = 4 / 4 + 4 - 4 2 = 4 / 4 + 4 / 4 3 = 4 - 4 / 4 + 4 4 = 4 + 4 - 4 - 4 5 = 4 + 4 / 4 6 = 4 + 4 - 4 / 4 7 = 4 + 4 / 4 + 4 8 = 4 + 4 + 4 / 4 9 = (4 + 4) / (4 / 4) 10 = 4 + 4 + 4 - 4 11 = 4 + 4 + 4 / 4 12 = 4 + 4 + 4 + 4 13 = (4 + 4) / 4 + 4 14 = 4 * 4 - 4 / 4 15 = 4 + 4 + 4 + 4 - 4 16 = 4 * 4 - 4 + 4 17 = 4 * 4 + 4 / 4 18 = (4 + 4) * (4 - 4) 19 = 4 * 4 + 4 - 4 20 = 4 * 4 + 4 / 4
The primes required are: 2 = (4+4)/4 3 = (4+4+4)/4 5 = (4+4+4+4+4)/4 7 = (4*4+4+4+4)/4 11 = (4(4*4-4)-4)/4 13 = (4*(4*4-4)+4)/4 17 = (4*4*4+4)/4 19 = (4*(4*4+4)-4)/4 23 = (4*(4*4+4+4)-4)/4 29 = (4*(4*4+4+4+4)+4)/4 31 = (4*4*(4+4)-4)/4 37 = (4*4*(4+4)+4*4+4)/4 41 = (4^4-4*(4*4)+4)/4 43 = (4^4-4(4*4+4+4))/4 47 = (4^4-4*4*4-4)/4 The remainder are left as an exercise. It should be noted that most of these are impossible to express with only six fours without either defining new operators or allowing for facetious, unmathematical cheats such as allowing 44 to be used.