There are no integer roots of this equation. Using the quadratic formula gives roots of 1.34 and 3.04 plus or minus loose change in each case.
0,16 1,49
65 + 65 + 65 + 65 + 65 + 65 + 65 + 65 + 65 + 65 + 65 + 65 = 65 x 12 = 780
-16t2 + 64t + 1224 = 0 Multiply both sides by -1 16t2 - 64t - 1224 = 0 Divide both side by 8 2t2 - 8t - 153 = 0 Cannot be factored so use the formula (-b (+ or -)(root of b2 - 4ac)) / 2a
16t2 + vt - S = 0 This is in the general form of the quadratic equation, and the general quadratic solution can be applied directly. t = [ (-v) plus or minus the square root of (v2 + 64S) ] all divided by 32.
16t2 - 37t + 20 = 0 Using the quadratic formula, t = [37 +/- sqrt(372 - 4*16*20)]/(2*16) = [37 +/- sqrt(89)] / 32 ie t = 0.861438 or t = 1.451062
65+65=130
245
98 plus 65 equals 163.
65 + 65 + 65 + 90 + 90 + 90 + 90 + 50 + 50 + 50 + 50 + 50 + 50 + 20 + 20 + 20 + 20 + 20 + 20 + 20 = 995
65
65/65=1+65=66
1 + 65 + 56 = 122