- Thread starter
- #1
Ebone_Love
New member
- Apr 30, 2021
- 5
g(f(x))=\( g(f(x))=2/(1/x-4)+4 \)
What is your question? If it's to find a possible combination of f(x) and g(x), theng(f(x))=\( g(f(x))=2/(1/x-4)+4 \)
$\frac{2}{\frac{1}{x}- 4}+ 4= \frac{2}{\frac{1}{x}- \frac{4x}{x}}+ 4= \frac{2}{\frac{1-4x}{x}}+ 4= \frac{2x}{1- 4x}+ 4$.g(f(x))=\( g(f(x))=2/(1/x-4)+4 \)