Q: What is hyperbolic least squares regression?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

Yes, it does exist.

Yes, it is.

The F-statistic is a test on ratio of the sum of squares regression and the sum of squares error (divided by their degrees of freedom). If this ratio is large, then the regression dominates and the model fits well. If it is small, the regression model is poorly fitting.

The graph and accompanying table shown here display 12 observations of a pair of variables (x, y).The variables x and y are positively correlated, with a correlation coefficient of r = 0.97.What is the slope, b, of the least squares regression line, y = a + bx, for these data? Round your answer to the nearest hundredth.2.04 - 2.05

The F-variate, named after the statistician Ronald Fisher, crops up in statistics in the analysis of variance (amongst other things). Suppose you have a bivariate normal distribution. You calculate the sums of squares of the dependent variable that can be explained by regression and a residual sum of squares. Under the null hypothesis that there is no linear regression between the two variables (of the bivariate distribution), the ratio of the regression sum of squares divided by the residual sum of squares is distributed as an F-variate. There is a lot more to it, but not something that is easy to explain in this manner - particularly when I do not know your knowledge level.

Related questions

Yes, it does exist.

It is often called the "Least Squares" line.

No, it is not resistant.It can be pulled toward influential points.

Naihua Duan has written: 'The adjoint projection pursuit regression' -- subject(s): Least squares, Regression analysis

If the regression sum of squares is the explained sum of squares. That is, the sum of squares generated by the regression line. Then you would want the regression sum of squares to be as big as possible since, then the regression line would explain the dispersion of the data well. Alternatively, use the R^2 ratio, which is the ratio of the explained sum of squares to the total sum of squares. (which ranges from 0 to 1) and hence a large number (0.9) would be preferred to (0.2).

Yes, it is.

the negative sign on correlation just means that the slope of the Least Squares Regression Line is negative.

Suppose you have two variables X and Y, and a set of paired values for them. You can draw a line in the xy-plane: say y = ax + b. For each point, the residual is defined as the observed value y minus the fitted value: that is, the vertical distance between the observed and expected values. The least squares regression line is the line which minimises the sum of the squares of all the residuals.

Quantile regression is considered a natural extension of ordinary least squares. Instead of estimating the mean of the regressand for a given set of regressors, and instead of minimizing sum of squares, it estimates different values of the regressand across its distribution, and minimizes instead the absolute distances between observations.

There are two regression lines if there are two variables - one line for the regression of the first variable on the second and another line for the regression of the second variable on the first. If there are n variables you can have n*(n-1) regression lines. With the least squares method, the first of two line focuses on the vertical distance between the points and the regression line whereas the second focuses on the horizontal distances.

Least squares regression is one of several statistical techniques that could be applied.

The F-statistic is a test on ratio of the sum of squares regression and the sum of squares error (divided by their degrees of freedom). If this ratio is large, then the regression dominates and the model fits well. If it is small, the regression model is poorly fitting.