Chat with our AI personalities
Yes, it does exist.
Yes, it is.
The F-statistic is a test on ratio of the sum of squares regression and the sum of squares error (divided by their degrees of freedom). If this ratio is large, then the regression dominates and the model fits well. If it is small, the regression model is poorly fitting.
The graph and accompanying table shown here display 12 observations of a pair of variables (x, y).The variables x and y are positively correlated, with a correlation coefficient of r = 0.97.What is the slope, b, of the least squares regression line, y = a + bx, for these data? Round your answer to the nearest hundredth.2.04 - 2.05
The F-variate, named after the statistician Ronald Fisher, crops up in statistics in the analysis of variance (amongst other things). Suppose you have a bivariate normal distribution. You calculate the sums of squares of the dependent variable that can be explained by regression and a residual sum of squares. Under the null hypothesis that there is no linear regression between the two variables (of the bivariate distribution), the ratio of the regression sum of squares divided by the residual sum of squares is distributed as an F-variate. There is a lot more to it, but not something that is easy to explain in this manner - particularly when I do not know your knowledge level.