Q: What is the focus of the parabola y 4x2?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

yes!

The equation y = 4x^2 + 5 is a parabola

It is a parabola with its vertex at the origin and the arms going upwards.

4x2-y2 = (2x-y)(2x+y)

Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.

Related questions

Their noses are both at the origin, and they both open upward, but y=4x2 is a much skinnier parabola.

yes!

I think you are talking about the x-intercepts. You can find the zeros of the equation of the parabola y=ax2 +bx+c by setting y equal to 0 and finding the corresponding x values. These will be the "roots" of the parabola.

The equation y = 4x^2 + 5 is a parabola

It is a parabola with its vertex at the origin and the arms going upwards.

The focus of a parabola is a fixed point that lies on the axis of the parabola "p" units from the vertex. It can be found by the parabola equations in standard form: (x-h)^2=4p(y-k) or (y-k)^2=4p(x-h) depending on the shape of the parabola. The vertex is defined by (h,k). Solve for p and count that many units from the vertex in the direction away from the directrix. (your focus should be inside the curve of your parabola)

x2 = 16y The standard formula for a parabola with its vertex at the origin (0, 0) and a given focus (and the y-axis as an axis of symmetry) is as follows: x2 = 4cy In this case, the c is the y value of the focus. The focus in this case was (0, 4), and the y value in the focus is 4. That makes the c = 4. Further, that makes the equation for this parabola x2 = 4 (c)y = 4 (4)y = 16y Given that the vertex was the origin, (0, 0), and the focus is (0, 4), we can conclude that the axis of symmetry is the y-axis because the y value of the focus is 0. We can also conclude that the parabola opens up, because the focus has a positive y value.

For a parabola with an axis of symmetry parallel to the x-axis, the equation of a parabola is given by: (y - k)² = 4p(x - h) Where the vertex is at (h, k), and the distance between the focus and the vertex is p (which can be calculated as p = x_focus - x_vertex). For the parabola with vertex (1, -3) and focus (2, -3) this gives: h = 1 k = -3 p = 2 - 1 = 1 → parabola is: (y - -3)² = 4×1(x - 1) → (y + 3)² = 4(x - 1) This can be expanded to: 4x = y² + 6y + 13 or x = (1/4)y² + (3/2)y + (13/4)

4x2-y2 = (2x-y)(2x+y)

It is the apex of the parabola.

Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.

First you need to solve for y. So write 4x2+y=16 so y=16-4x2 Now write f(x)=16-4x2