answersLogoWhite

0

The time that it "takes" is the period.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Physics

How can I determine the frequency of a pendulum?

To determine the frequency of a pendulum, you can use the formula: frequency 1 / period. The period is the time it takes for the pendulum to complete one full swing back and forth. You can measure the period by timing how long it takes for the pendulum to complete one full swing. Then, calculate the frequency by taking the reciprocal of the period.


What is the period of a pendulum that takes one second to make a complete back and forth vibration?

The period of a pendulum that takes one second to complete a full oscillation is 2 seconds. Each back and forth swing (oscillation) consists of two periods, one forward and one backward. So, the total time for a complete back and forth vibration is 2 seconds.


How fast does a pendulum swing?

The speed at which a pendulum swings depends on the length of the pendulum and the acceleration due to gravity. The time it takes for one complete swing (from one side to the other and back) is called the period, and it is typically around 1-2 seconds for a regular pendulum.


How to find the frequency of a pendulum?

The frequency of a pendulum can be found by dividing the number of swings it makes in a given time period by that time period. The formula for calculating the frequency of a pendulum is: frequency 1 / time period. The time period is the time it takes for the pendulum to complete one full swing back and forth.


How long must a simple pendulum be in order to have a period of one second?

A simple pendulum must be approximately 0.25 meters long to have a period of one second. This length is calculated using the formula for the period of a simple pendulum, which is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. By substituting T = 1 second and g = 9.81 m/s^2, you can solve for L.

Related Questions

What is the timeperiod of pendulum which ticks seconds?

The period is 1 second.


How can I determine the frequency of a pendulum?

To determine the frequency of a pendulum, you can use the formula: frequency 1 / period. The period is the time it takes for the pendulum to complete one full swing back and forth. You can measure the period by timing how long it takes for the pendulum to complete one full swing. Then, calculate the frequency by taking the reciprocal of the period.


What is the period of a pendulum that takes one second to make a complete back and forth vibration?

The period of a pendulum that takes one second to complete a full oscillation is 2 seconds. Each back and forth swing (oscillation) consists of two periods, one forward and one backward. So, the total time for a complete back and forth vibration is 2 seconds.


How fast does a pendulum swing?

The speed at which a pendulum swings depends on the length of the pendulum and the acceleration due to gravity. The time it takes for one complete swing (from one side to the other and back) is called the period, and it is typically around 1-2 seconds for a regular pendulum.


How to find the frequency of a pendulum?

The frequency of a pendulum can be found by dividing the number of swings it makes in a given time period by that time period. The formula for calculating the frequency of a pendulum is: frequency 1 / time period. The time period is the time it takes for the pendulum to complete one full swing back and forth.


How long must a simple pendulum be in order to have a period of one second?

A simple pendulum must be approximately 0.25 meters long to have a period of one second. This length is calculated using the formula for the period of a simple pendulum, which is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. By substituting T = 1 second and g = 9.81 m/s^2, you can solve for L.


If the period of a pendulum is 4 seconds what would the frequency be?

1/4 Hertz or 1.4 per second.


The lenth of second's pendulum of the earth is about 1 m What should be the length of second's pendulum on the moon?

If the length of the second pendulum of the earth is about 1 meter, the length of the second pendulum should be between 0.3 and 0.5 meters.


What is the period of a simple pendulum is its frequency is 20 Hz?

The period of a simple pendulum is the time it takes for one full oscillation (swing) back and forth. To find the period, you can use the formula: Period = 1 / Frequency. So, if the frequency is 20 Hz, the period would be 1/20 = 0.05 seconds.


What time does the pendulum take for one swing?

The time it takes for a pendulum to complete one full swing is determined by the length of the pendulum and the acceleration due to gravity. The formula for the period of a pendulum is T = 2π√(l/g), where T is the period, l is the length of the pendulum, and g is the acceleration due to gravity. Typically, a pendulum with a length of 1 meter will take about 2 seconds to complete one swing.


What is frequacey of second pendulum?

The frequency of a seconds pendulum is 1 Hz, or 1 cycle per second. This means that the pendulum completes one full swing back and forth in one second.


If a simple pendulum with a period of 1 second is set in motion of the moon what is the new period of this pendulum?

The equation is: http://hyperphysics.phy-astr.gsu.edu/HBASE/imgmec/pend.gif T is the period in seconds, L is pendulum length in cm, g is acceleration of gravity in m/s2. We know on earth the period is 1s when the acceleration of gravity is 9.8m/s2, so the pendulum length is 24.824cm. The acceleration of gravity on the moon is 1.6m/s2. Substitute 24.824cm for L and 1.6 for g and you yield 2.475 seconds. The period is 2.475 seconds.