answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What is the solution to the Heat equation using fourier transform?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

When would one use the Fourier Transform?

Physics would be one of a few examples of fourier transform. One would also use it when they are using engineering so, yeah that is basically it as far as the fourier transform is concerned.


How can a composite signal be decomposed into its individual frequencies?

Fourier analysis Frequency-domain graphs


What is the difference between Fourier transform and Wavelet transform?

Fourier transform analyzes signals in the frequency domain, representing the signal as a sum of sinusoidal functions. Wavelet transform decomposes signals into different frequency components using wavelet functions that are localized in time and frequency, allowing for analysis of both high and low frequencies simultaneously. Wavelet transform is more suitable than Fourier transform for analyzing non-stationary signals with localized features.


Is there away to sort an array of data using the fast Fourier transform and finding the highest lower or average value finding his value or even best his position?

The Fast Fourier Transform is an implementation of the Discrete Fourier Transform. The DFT is a method of processing a time-sampled signal (eg, an audio wave) into a series of sines and cosines. As such, it is not a sorting algorithm, so this question does not make any sense.


What has the author Shunde Zhao written?

Shunde Zhao has written: 'The computation of detailed geoids using the fast Fourier transform method'


What is a quantitative EEG?

An extension of the EEG technique, called quantitative EEG (qEEG), involves manipulating the EEG signals with a computer using the fast Fourier transform algorithm.


In Fourier transformation and Fourier series which one follows periodic nature?

The Fourier series can be used to represent any periodic signal using a summation of sines and cosines of different frequencies and amplitudes. Since sines and cosines are periodic, they must form another periodic signal. Thus, the Fourier series is period in nature. The Fourier series is expanded then, to the complex plane, and can be applied to non-periodic signals. This gave rise to the Fourier transform, which represents a signal in the frequency-domain. See links.


What is involved in a quantitative electroencephalography?

manipulating the EEG signals with a computer using the fast Fourier transform algorithm. The result is then best displayed using a colored gray scale transposed onto a schematic map of the head


Difference between fourier series and z-transform?

Laplace = analogue signal Fourier = digital signal Notes on comparisons between Fourier and Laplace transforms: The Laplace transform of a function is just like the Fourier transform of the same function, except for two things. The term in the exponential of a Laplace transform is a complex number instead of just an imaginary number and the lower limit of integration doesn't need to start at -∞. The exponential factor has the effect of forcing the signals to converge. That is why the Laplace transform can be applied to a broader class of signals than the Fourier transform, including exponentially growing signals. In a Fourier transform, both the signal in time domain and its spectrum in frequency domain are a one-dimensional, complex function. However, the Laplace transform of the 1D signal is a complex function defined over a two-dimensional complex plane, called the s-plane, spanned by two variables, one for the horizontal real axis and one for the vertical imaginary axis. If this 2D function is evaluated along the imaginary axis, the Laplace transform simply becomes the Fourier transform.


Explain how to identify whether an equation has no solution or infinitely many solutions?

An equation can be determine to have no solution or infinitely many solutions by using the square rule.


Derivation for transient current by using series rlc circuit?

the most convenient solution is to use the laplace transform, connecting it in series makes a current loop in kvl, where the summation of e (the supply) equals the voltage in resistor, inductor and capaitor,, using differential ang integral, we can create a formula of function... to simplify use the laplace transform, then inverse laplace transform... after the action completed, you will now have a pronounced equation for current as a function of time


What is the Syllabus of engg mathematics for Be?

MA1201 MATHEMATICS III 3 1 0 100 AIM The course aims to develop the skills of the students in the areas of boundary value problems and transform techniques. This will be necessary for their effective studies in a large number of engineering subjects like heat conduction, communication systems, electro-optics and electromagnetic theory. The course will also serve as a prerequisite for post graduate and specialized studies and research. OBJECTIVES At the end of the course the students would • Be capable of mathematically formulating certain practical problems in terms of partial differential equations, solve them and physically interpret the results. • Have gained a well founded knowledge of Fourier series, their different possible forms and the frequently needed practical harmonic analysis that an engineer may have to make from discrete data. • Have obtained capacity to formulate and identify certain boundary value problems encountered in engineering practices, decide on applicability of the Fourier series method of solution, solve them and interpret the results. • Have grasped the concept of expression of a function, under certain conditions, as a double integral leading to identification of transform pair, and specialization on Fourier transform pair, their properties, the possible special cases with attention to their applications. • Have learnt the basics of Z - transform in its applicability to discretely varying functions, gained the skill to formulate certain problems in terms of difference equations and solve them using the Z - transform technique bringing out the elegance of the procedure involved. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9 + 3 Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions - Solution of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients. UNIT II FOURIER SERIES 9 + 3 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier Series - Parseval's identify - Harmonic Analysis. UNIT III BOUNDARY VALUE PROBLEMS 9 + 3 Classification of second order quasi linear partial differential equations - Solutions of one dimensional wave equation - One dimensional heat equation - Steady state solution of two-dimensional heat equation (Insulated edges excluded) - Fourier series solutions in Cartesian coordinates. UNIT IV FOURIER TRANSFORM 9 + 3 Fourier integral theorem (without proof) - Fourier transform pair - Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. UNIT V Z -TRANSFORM AND DIFFERENCE EQUATIONS 9 + 3 Z-transform - Elementary properties - Inverse Z - transform - Convolution theorem -Formation of difference equations - Solution of difference equations using Z - transform. TUTORIAL 15 TOTAL : 60 TEXT BOOKS 1. Grewal, B.S., "Higher Engineering Mathematics", Thirty Sixth Edition, Khanna Publishers, Delhi, 2001. 2. Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematics Volume III", S. Chand & Company ltd., New Delhi, 1996. 3. Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth Edition, McGraw-Hill, Inc., New York, 1995. REFERENCES 1. Andrews, L.A., and Shivamoggi B.K., "Integral Transforms for Engineers and Applied Mathematicians", Macmillen , New York ,1988. 2. Narayanan, S., Manicavachagom Pillay, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volumes II and III, S. Viswanathan (Printers and Publishers) Pvt. Ltd. Chennai, 2002. 3. Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw-Hill Book Co., Singapore, 1987.