Ax2 + By2 = C
x2 + y2 = 4.
x² + y² = 25.
This ellipse is centered at the origin and has a horizontal axis of length 26 and a vertical axis of length 12 What is its equation?
Standard equation for a circle centred at the origin is x2 + y2 = r2 where r is the radius of the circle. If you increase the size of the circle then the radius must increase, so r2 will be larger. eg a circle of radius 2 has the equation x2 + y2 = 4, if the radius increases to 3 then the equation becomes x2 + y2 = 9
x2/a2 + y2/b2 = 1, is the equation of an ellipse with semi-major axes a and b (that's the equivalent of the radius, along the two different axes), centered in the origin.
Ellipse formula, centered at the origin, where the vertical axis is the major axis: x2/b2 + y2/a2 = 1, a > b Since the major axis is 8, then a = 4. Since the minor axis is 4, then b = 2. Thus, the equation of the ellipse is: x2/4 + y2/16 = 1.
x2 + y2 = r2 gives a circle centred on the origin, radius r.
6*4
This equation is equal to the first one because it produces the same results, always. ... TL;DR - The circle equation is what you get when you multiply all terms from the ellipse equation by the radius. x^2/a^2 + y^2/b^2 = 1 is an ellipse equation. Well, a circle has a radius where a and b are the same.
X^2/2^2 + y^2/4^2 = 1
You know the formula for the area of a circle of radius R. It is Pi*R2. But what about the formula for the area of an ellipse of semi-major axis of length A and semi-minor axis of length B? (These semi-major axes are half the lengths of, respectively, the largest and smallest diameters of the ellipse--- see Figure 1.) For example, the following is a standard equation for such an ellipse centered at the origin: (x2/A2) + (y2/B2) = 1. The area of such an ellipse is Area = Pi * A * B , a very natural generalization of the formula for a circle!
x2/52 + y2/93 = 1