Standard equation for a circle centred at the origin is x2 + y2 = r2 where r is the radius of the circle. If you increase the size of the circle then the radius must increase, so r2 will be larger. eg a circle of radius 2 has the equation x2 + y2 = 4, if the radius increases to 3 then the equation becomes x2 + y2 = 9
In the standard equation of a circle centered at the origin, (x^2 + y^2 = r^2), the number that changes when you make the circle bigger or smaller is (r^2), where (r) is the radius of the circle. As you increase or decrease the radius, (r^2) will correspondingly increase or decrease. The values of (x) and (y) remain constant as they represent points on the circle.
In the standard equation for a circle centered at the origin, ( x^2 + y^2 = r^2 ), the radius ( r ) determines the size of the circle. When you make the circle smaller, the radius ( r ) decreases, which in turn causes ( r^2 ) to decrease as well. Thus, the value of ( r^2 ) in the equation decreases when the circle is made smaller.
In the standard equation for a circle centered at the origin, ( x^2 + y^2 = r^2 ), the radius ( r ) determines the size of the circle. When you make the circle smaller, you decrease the radius ( r ). Consequently, the value of ( r^2 ) also decreases, resulting in a smaller circle. Thus, the number that decreases in the equation is ( r^2 ).
The absolute value of the standard score becomes smaller.
The smaller the standard deviation, the closer together the data is. A standard deviation of 0 tells you that every number is the same.
The Radius
In the standard equation of a circle centered at the origin, (x^2 + y^2 = r^2), the number that changes when you make the circle bigger or smaller is (r^2), where (r) is the radius of the circle. As you increase or decrease the radius, (r^2) will correspondingly increase or decrease. The values of (x) and (y) remain constant as they represent points on the circle.
The radius of the circle decreases when you make the circle smaller.
In the standard equation for a circle centered at the origin, ( x^2 + y^2 = r^2 ), the radius ( r ) determines the size of the circle. When you make the circle smaller, the radius ( r ) decreases, which in turn causes ( r^2 ) to decrease as well. Thus, the value of ( r^2 ) in the equation decreases when the circle is made smaller.
In the standard equation for a circle centered at the origin, ( x^2 + y^2 = r^2 ), the radius ( r ) determines the size of the circle. When you make the circle smaller, you decrease the radius ( r ). Consequently, the value of ( r^2 ) also decreases, resulting in a smaller circle. Thus, the number that decreases in the equation is ( r^2 ).
The absolute value of the standard score becomes smaller.
No.
Let sigma = standard deviation. Standard error (of the sample mean) = sigma / square root of (n), where n is the sample size. Since you are dividing the standard deviation by a positive number greater than 1, the standard error is always smaller than the standard deviation.
Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller. Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller. Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller. Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller.
you should listen in class. mate
equations are for making a math sentence smaller and to replace big numbers
A fission equation describes the splitting of an atomic nucleus into two or more smaller nuclei, accompanied by the release of a large amount of energy. An example of a fission reaction is the splitting of a uranium nucleus into two smaller nuclei, along with the release of neutrons and energy.