Assuming the question is about the prime meridian, it is the imaginary line joining the North and South poles which passes through a specific point in the Greenwich observatory in London.
103 is.
Implement an isPrime method int JAVA with this: int count = 0, num = 2; while(count < 50) { if(isPrime(num)) count++; num++; }
#include #include void main(){int i;for(i=1;i
public class Primes { public static void main(String[] args) { for(int i = 2; i < 100; i++) { if(isPrime(i)) { System.out.println(i); } } } public static boolean isPrime(int n) { if(n 0) return false; } return true; } } }
Here's an example. I've included analysis. #include<stdio.h> #include<stdlib.h> #include<math.h> int main(void) { /* User inputs high and low ends of range to search. / This could easily be done as function inputs, if / if so desired. */ int testprime,testdivisor, minprime, maxprime; printf("Search for primes between:\nLow end: "); scanf("%d",minprime); printf("Top end: "); scanf("%d",maxprime); int isprime; // 0 indicates a number is not prime.. for(testprime=minprime;testprime<=maxprime;testprime++) { isprime = 1; for(testdivisor=2;testdivisor<sqrt(testprime);testdivisor++) // Primes divide by 1! { isprime = testprime%testdivisor; // % finds remainders, so 7%3 returns 1. // If 0 is returned, a divisor has been found. if(isprime == 0) break; // Hence, not prime. "break;" exits the loop. } if(isprime != 0) printf("%d is prime.\n",testprime); } system("pause"); return 0; }
Please check following link for primality test. http://en.wikipedia.org/wiki/Primality_testFollowing code is not in the optimized form...and it may contains some error please check it carefully before using ... int[] numbers = { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 }; System.Collections.ArrayList PrimeNumbers = new System.Collections.ArrayList(); Boolean isPrime = false; for (int loop = 0; loop < numbers.Length; loop++) { int intNumberToTest = numbers[loop]; for (int intTest = 2; intTest
private static boolean IsPrime(int Number) { int maxchk = (int) Math.ceil( Math.sqrt(Number) ); //makes it faster because we check less boolean isit = true; for (int i=2; i<=maxchk; i++) { if (Number % i ==0) isit=false; } return isit; } Simply call this from inside a for loop, EG for (int i=3; i<=N; i++) isPrime(i)
No, 895 is not a prime number. The number 5 isprime, but any number ending in 5 (like 895) is divisible by 5, and cannot be a prime number.
#include <iostream> bool isPrime(int p) { if( p<=1 ( p>2 && p%2==0 ))return( false );int max = (int)sqrt(( double ) p ) + 1; for( int i=3; i<=max; i+=2 )if( p%i==0 )return( false );return( true ); } int main() { for( int i=1; i<100; i>2?i+=2:++i )if( isPrime(i) )std::cout << i << std::endl;return( 0 ); }
#include <iostream> bool isPrime(int p) {if( p<=1 ( p>2 && p%2==0 ))return( false );int max = (int)sqrt(( double ) p ) + 1; for( int i=3; i<=max; i+=2 )if( p%i==0 )return( false );return( true ); } int main() {for( int i=1; i<5000; i>2?i+=2:++i )if( isPrime(i) )std::cout << i << std::endl;return( 0 ); }
#include <iostream> bool isPrime(int p) {if( p<=1 ( p>2 && p%2==0 ))return( false );int max = (int)sqrt(( double ) p ) + 1; for( int i=3; i<=max; i+=2 )if( p%i==0 )return( false );return( true ); } int main() {for( int i=1; i<50; i>2?i+=2:++i )if( isPrime(i) )std::cout << i << std::endl;return( 0 ); }
I suggest you write an outer loop, that loops through all the numbers from 1 to 50. Call the variable that controls the loop something like "number".Then, initially assume the number is a prime (with a variable such as "isprime"); and write another loop that compares whether the number is divisible by any number from 2 to number-1. Call the controlling variable "factor". If number is divisible by factor, then it is not a prime, and you can exit the loop. At the end of the inner loop, if the variable "isprime" is still true, then you print the number.