Plot the function. You may have found an inflection point.
Optimization problems that involve finding the maxima or minima of functions also involve taking the first derivative of the function and finding locations where the value of the first derivative is equal to zero (by setting f'(x) = 0). The locations are either maxima, minima, or points of inflection and a second derivative test can be used to determine which of the three was found (max: f''(x) < 0, min: f''(x) > 0, PoI: f''(x) = 0).
There are two tests involved in checking for maximum and minimum because, if you only checked for a value of zero for the first derivative, you would only know that the equation has zero slope at that point. You also need to check the second derivative to see if that point is a maximum, a minimum, or an inflection point.To be fully correct, you also need to understand the equation itself, because there may be more than one maxima or minima, and/or there may be a discontinuity. This is all part of the process of finding a maximum or minimum.
No. The important decider is the second derivative of the polynomial (the gradient of the gradient of the polynomial) at the zero of the first derivative: If less than zero, then the point is a maximum If more than zero, then the point in a minimum If equal to zero, then the point is a point of inflection. Consider the polynomial f(x) = x3, then f'(x) = 3x2 f'(0) = 0 -> x = 0 could be a maximum, minimum or point of inflection. f''(x) = 6x f''(0) = 0 -> x = 0 is a point of inflection Points of inflection do not necessarily have a zero gradient, unlike maxima and minima which must. Points of inflection are the zeros of the second derivative of the polynomial.
The Geometrical meaning of the second derivative is the curvature of the function. If the function has zero second derivative it is straight or flat.
All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2
The first derivative is the rate of change, and the second derivative is the rate of change of the rate of change.
well, the second derivative is the derivative of the first derivative. so, the 2nd derivative of a function's indefinite integral is the derivative of the derivative of the function's indefinite integral. the derivative of a function's indefinite integral is the function, so the 2nd derivative of a function's indefinite integral is the derivative of the function.
The formula for calculating the parabola radius of curvature at a specific point on the curve is: R (1 (dy/dx)2)(3/2) / d2y/dx2, where R is the radius of curvature, dy/dx is the first derivative of y with respect to x, and d2y/dx2 is the second derivative of y with respect to x.
When you solve for the 2nd derivative, you are determining whether the function is concave up/down. If you calculated that the 2nd derivative is negative, the function is concave down, which means you have a relative/absolute maximum, given that the 1st derivative equals 0. To understand why this is, think about the definition of the 2nd derivative. It is a measure of the rate of change of the gradient. At a maximum, the gradient starts positive, becomes 0 at the maximum itself and then becomes negative, so it is decreasing. If the gradient is going down, then its rate of change, the 2nd derivative, must be negative.
2x is the first derivative of x2.
Yes.
2x is the first derivative of x2.