It is (r - n)2
n p =n!/(n-r)! r and n c =n!/r!(n-r)! r
the question is = The S R of -1 is an I N = so the answer is: the square root of -1 is an imaginary number
If the first term, t(1) = a and the common difference is r then t(n) = a + (n-1)*r where n = 1, 2, 3, ...
P(n,r)=(n!)/(r!(n-r)!)This would give you the number of possible permutations.n factorial over r factorial times n minus r factorial
In an arithmetic progression the difference between each term (except the first) and the one before is a constant. In a geometric progression, their ratio is a constant.That is,Arithmetic progressionU(n) - U(n-1) = d, where d, the common difference, is a constant and n = 2, 3, 4, ...Equivalently,U(n) = U(n-1) + d = U(1) + (n-1)*dGeometric progressionU(n) / U(n-1) = r, where r, the common ratio is a non-zero constant and n = 2, 3, 4, ...Equivalently,U(n) = U(n-1)*r = U(1)*r^(n-1).
Automated trash pickup, often associated with robotic or automated systems for waste collection, does not have a single inventor. Various innovations in waste management technology have emerged over the years, with contributions from multiple companies and engineers. Notably, systems like the Automated Waste Collection System (AWCS) were developed in the 1960s by Swedish engineer Sten M. H. S. M. C. O. J. W. K. B. N. H. H. H. K. R. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R.
Yes, the R train (of the N-R-Q-W, the yellow line) stops at the 14th Street/Union Square Station.
The difference between successive terms in an arithmetic sequence is a constant. Denote this by r. Suppose the first term is a. Then the nth term, of the sequence is given by t(n) = (a-r) + n*r or a + (n-1)*r
In an arithmetic progression the difference between each term (except the first) and the one before is a constant. In a geometric progression, their ratio is a constant. That is, Arithmetic progression U(n) - U(n-1) = d, where d, the common difference, is a constant and n = 2, 3, 4, ... Equivalently, U(n) = U(n-1) + d = U(1) + (n-1)*d Geometric progression U(n) / U(n-1) = r, where r, the common ratio is a non-zero constant and n = 2, 3, 4, ... Equivalently, U(n) = U(n-1)*r = U(1)*r^(n-1).
nCr + nCr-1 = n!/[r!(n-r)!] + n!/[(r-1)!(n-r+1)!] = n!/[(r-1)!(n-r)!]*{1/r + 1/n-r+1} = n!/[(r-1)!(n-r)!]*{[(n-r+1) + r]/[r*(n-r+1)]} = n!/[(r-1)!(n-r)!]*{(n+1)/r*(n-r+1)]} = (n+1)!/[r!(n+1-r)!] = n+1Cr
the square root of -1 is an imaginary number
Gravitational force decreases as the square of distance. In this case, the force has decreased by 200 N / 50 N = 4. Therefore, the distance must be sqrt (4) = 2 times what it was. It was R before, then it must be 2R now.