Ramanujan
Henry Frederick Baker has written: 'Abel's theorem and the allied theory' -- subject(s): Abelian Functions, Functions, Abelian, Functions, Theta, Riemann surfaces, Theta Functions
Theta is a function of set as
Jun-ichi Igusa has written: 'Theta functions' -- subject(s): Abelian varieties, Commutative rings, Theta Functions
By converting cosecants and secants to the equivalent sine and cosine functions. For example, csc theta is the same as 1 / sin thetha.
R. P. Agarwal has written: 'Resonance of Ramanujan's mathematics' -- subject(s): Continued fractions, Functions, Theta, Hypergeometric series, Influence, Theta Functions
They are mathematical functions. Most people are introduced to them as trigonometric functions. In the context of a right angled triangle, with one of its angles being theta, Cos(theta) = The ratio of the lengths of the adjacent side and the hypotenuse. Sin(theta) = The ratio of the lengths of the opposite side and the hypotenuse. More advanced mathematicians will know them simply as the following infinite series: Cos(theta) = 1 - x2/2! + x4/4! - x6/6! + ... and Sin(theta) = x/1! - x3/3! + x5/5! - x7/7! + ... n! = 1*2*3* ... *n
You can use your trigonometric functions (sine, cosine, and tangent).
sin theta and csc theta are reciprocal functions because sin = y/r and csc = r/y you use the same 2 sides of a triangle, but you use the reciprocal.
The complex number exp(i theta) is significant in trigonometry and exponential functions because it represents a point on the unit circle in the complex plane. This number can be used to express trigonometric functions and rotations in a concise and elegant way, making it a powerful tool in mathematical analysis and problem-solving.
Sine Theta (sin θ) = opposite/hypotenuse = a/c Cosine Theta (cos θ) = adjacent/hypotenuse = b/c Tangent Theta (tan θ) = opposite/adjacent = a/b Cotangent Theta (cot θ) = adjacent/opposite = b/a Secant Theta (sec θ) = hypotenuse/adjacent = c/b Cosecant Theta (csc θ) = hypotenuse/opposite = c/a You may need to look on the link below for some sample calculations
The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.
tan2(theta) + 5*tan(theta) = 0 => tan(theta)*[tan(theta) + 5] = 0=> tan(theta) = 0 or tan(theta) = -5If tan(theta) = 0 then tan(theta) + cot(theta) is not defined.If tan(theta) = -5 then tan(theta) + cot(theta) = -5 - 1/5 = -5.2