because if you don't have a solution of that problem you can't see the final answer
A system of linear equations can only have: no solution, one solution, or infinitely many solutions.
NO! A linear system can only have one solution (the lines intersect at one point), no solution (the lines are parallel), and infinitely many solutions (the lines are equivalent).
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
To determine how many solutions a linear system has, we need to analyze the equations involved. A linear system can have one unique solution, infinitely many solutions, or no solution at all. This is usually assessed by examining the coefficients and constants of the equations, as well as using methods like substitution, elimination, or matrix analysis. If the equations are consistent and independent, there is one solution; if they are consistent and dependent, there are infinitely many solutions; and if they are inconsistent, there are no solutions.
The solution to a system on linear equations in nunknown variables are ordered n-tuples such that their values satisfy each of the equations in the system. There need not be a solution or there can be more than one solutions.
If the lines intersect, then the intersection point is the solution of the system. If the lines coincide, then there are infinite number of the solutions for the system. If the lines are parallel, there is no solution for the system.
Any solution to a system of linear equations must satisfy all te equations in that system. Otherwise it is a solution to AN equation but not to the system of equations.
A system of linear equations cannot have two distinct solutions if it is consistent and defined in a Euclidean space. If two linear equations intersect at a single point, they have one solution; if they are parallel, they have no solutions. However, if the equations are dependent, meaning one equation is a multiple of the other, they represent the same line and thus have infinitely many solutions, not just two. Therefore, in standard scenarios, a system of linear equations can either have one solution, no solutions, or infinitely many solutions, but not exactly two.
No, a system of two linear equations cannot have exactly two solutions. In a two-dimensional space, two linear equations can either intersect at one point (one solution), be parallel (no solutions), or be the same line (infinitely many solutions). Therefore, it is impossible for a system of two linear equations to have exactly two solutions.
If the lines cross then there is one solution. If they are on top of each other then there are infinite solutions. If they are parallel then there are no solutions.
A set of equations is inconsistent, if its solution set is empty.
They are a set of equations in two unknowns such that any term containing can contain at most one of the unknowns to the power 1. A system of linear equations can have no solutions, one solution or an infinite number of solutions.