one solution; the lines that represent the equations intersect
an infinite number of solution; the lines coincide, or
no solution; the lines are parallel
No. At least, it can't have EXACTLY 3 solutions, if that's what you mean. A system of two linear equations in two variables can have:No solutionOne solutionAn infinite number of solutions
Any solution to a system of linear equations must satisfy all te equations in that system. Otherwise it is a solution to AN equation but not to the system of equations.
If the equations are linear, they may have no common solutions, one common solutions, or infinitely many solutions. Graphically, in the simplest case you have two straight lines; these can be parallel, intersect in a same point, or actually be the same line. If the equations are non-linear, they may have any amount of solutions. For example, two different intersecting ellipses may intersect in up to four points.
anal juice
A system of linear equations is two or more simultaneous linear equations. In mathematics, a system of linear equations (or linear system) is a collection of linear equations involving the same set of variables.
Yes, a system of linear equations can have zero solutions, which is known as an inconsistent system. This occurs when the equations represent parallel lines that never intersect, meaning there is no point that satisfies all equations simultaneously. A common example is the system represented by the equations (y = 2x + 1) and (y = 2x - 3), which are parallel and thus have no solutions.
Any system of linear equations can have the following number of solutions: 0 if the system is inconsistent (one of the equations degenerates to 0=1) 1 if the system is linearly independent infinity if the system has free variables and is not inconsistent.
A system of linear equations can only have: no solution, one solution, or infinitely many solutions.
A system of two linear equations in two unknowns can have three possible types of solutions: exactly one solution (when the lines intersect at a single point), no solutions (when the lines are parallel and never intersect), or infinitely many solutions (when the two equations represent the same line). Thus, there are three potential outcomes for such a system.
As there is no system of equations shown, there are zero solutions.
False. There can either be zero, one, or infinite solutions to a system of two linear equations.
No, a system of two linear equations cannot have exactly two solutions. In a two-dimensional space, two linear equations can either intersect at one point (one solution), be parallel (no solutions), or be the same line (infinitely many solutions). Therefore, it is impossible for a system of two linear equations to have exactly two solutions.
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
A system of linear equations cannot have two distinct solutions if it is consistent and defined in a Euclidean space. If two linear equations intersect at a single point, they have one solution; if they are parallel, they have no solutions. However, if the equations are dependent, meaning one equation is a multiple of the other, they represent the same line and thus have infinitely many solutions, not just two. Therefore, in standard scenarios, a system of linear equations can either have one solution, no solutions, or infinitely many solutions, but not exactly two.
Yes, a system of linear equations can have an infinite number of solutions when the equations represent the same line or when they are dependent on each other. This typically occurs in systems with fewer independent equations than variables, leading to free variables that allow for multiple solutions. In such cases, the solutions can be expressed in terms of parameters, indicating a whole line or plane of solutions rather than a single point.
It means that there is no set of values for the variables such that all the linear equations are simultaneously true.
A.infinitely manyB.oneD.zero