Construct a truth table for ~q (p q)
___p_|_t_|_f_| q__t_|_t_|_t_| ___f_|_t_|_f_|
"P and not P" is always false. If P is true, not P is false; if P is false, not P is true. In either case, combining a true and a false with the AND operator gives you false. And if you look at the truth table for the implication (the "therefore" part), when the left part is false, the result is always true.
p-4
If p is true and q is false, p or q would be true. I had a hard time with this too but truth tables help. When using P V Q aka p or q, all you need is for one of the answers to be true. Since p is true P V Q would also be true:)
dont know haha :P
Making a truth table is actually very simple.For the statement P, it can either be true, or false.P--TFNOT P, or -p (or ~p) is the opposite. If P is true, then not P is... false!The same holds true for if P is false, what is not P? True!The truth table for ~p looks like thisP | ~p--------T | FF | T
___p_|_t_|_f_| q__t_|_t_|_t_| ___f_|_t_|_f_|
what is the correct truth table for p V~ q
truth table gives relation between i/p & o/p. excitation table is use for design of ff & counters.
Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False
A+
. p . . . . . q. 0 . . . . . 1. 1 . . . . . 0
I guess you mean q → p (as in the logic operator: q implies p).To create this truth table, you run over all truth values for q and p (that is whether each statement is True or False) and calculate the value of the operator. You can use True/False, T/F, 1/0, √/X, etc as long as you are consistent for the symbol used for True and the symbol used for False (the first 3 suggestions given are the usual ones used).For implies:if you have a true statement, then it can only imply a true statement to be truebut a negative statement can imply either a true statement or a false one to be truegiving:. q . . p . q→p--------------. 0 . . 0 . . 1 .. 0 . . 1 . . 1 .. 1 . . 0 . . 0 .. 1 . . 1 . . 1 .
1)p->q 2)not p or q 3)p 4)not p and p or q 5)contrudiction or q 6)q
Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q
P Q (/P or /Q) T T F T F T F T T F F T
P . . Q . . (P or Q)0 . . 0 . . . 00 . . 1 . . . 11 . . 0 . . . 11 . . 1 . . . 1=================P . . Q . . NOT(P and Q)0 . . 0 . . . . 10 . . 1 . . . . 11 . . 0 . . . . 11 . . 1 . . . . 0