what is the correct truth table for p V~ q
P Q (/P or /Q) T T F T F T F T T F F T
p --> q and q --> p are not equivalent p --> q and q --> (not)p are equivalent The truth table shows this. pq p --> q q -->(not)p f f t t f t t t t f f f t t t t
The truth values.
true or false = true
what is the correct truth table for p V~ q
Construct a truth table for ~q (p q)
. p . . . . . q. 0 . . . . . 1. 1 . . . . . 0
Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q
1)p->q 2)not p or q 3)p 4)not p and p or q 5)contrudiction or q 6)q
P Q (/P or /Q) T T F T F T F T T F F T
P . . Q . . (P or Q)0 . . 0 . . . 00 . . 1 . . . 11 . . 0 . . . 11 . . 1 . . . 1=================P . . Q . . NOT(P and Q)0 . . 0 . . . . 10 . . 1 . . . . 11 . . 0 . . . . 11 . . 1 . . . . 0
p --> q and q --> p are not equivalent p --> q and q --> (not)p are equivalent The truth table shows this. pq p --> q q -->(not)p f f t t f t t t t f f f t t t t
The truth values.
p > q~qTherefore, ~p| p | q | p > q | ~q | ~p || t | t | t | f | f || t | f | t | t | f || f | t | t | f | t || f | f | t | t | t |
___p_|_t_|_f_| q__t_|_t_|_t_| ___f_|_t_|_f_|
P | T T F F Q | T F T F Q' | F T F T P + Q' | F T F F The layout is the best I could do with this software. Hope it is OK.