6
2
Undefined
A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠0x ≠1The domain is {x| x ≠1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.
A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠ 0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠ 0x ≠ 1The domain is {x| x ≠ 1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.
+1/0 or -1/0 or 0/0
4
2
This is wrong
Undefined
You do not. If you do, the expression is undefined: it has no value.
Any number that can be expressed as a fraction is a rational number otherwise it is an irrational number.
The excluded values of a rational expression are the values of the variable that make the denominator equal to zero. These values are not in the domain of the expression, as division by zero is undefined. To identify excluded values, set the denominator equal to zero and solve for the variable. Any solution to this equation represents an excluded value.
A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠0x ≠1The domain is {x| x ≠1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.
A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠ 0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠ 0x ≠ 1The domain is {x| x ≠ 1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.
A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠0x ≠1The domain is {x| x ≠1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.
+1/0 or -1/0 or 0/0
An excluded value is any x value that makes a function value y undefined. For a rational function, an excluded value is a value that makes the denominator equal to 0.