The excluded values of a rational expression are the values of the variable that make the denominator equal to zero. These values are not in the domain of the expression, as division by zero is undefined. To identify excluded values, set the denominator equal to zero and solve for the variable. Any solution to this equation represents an excluded value.
I am rational, but not a number. This statement is therefore half correct.
Another rational expression.
Yes.
Any number that can be expressed as a fraction is a rational number otherwise it is an irrational number.
The expression written in the question is the rational expression.
I am rational, but not a number. This statement is therefore half correct.
Another rational expression.
Yes.
If you divide a rational expression by another rational expression, you will again get a rational expression.
An excluded value is a value that is not allowed or is not valid in a particular mathematical context, such as in a function or equation. For example, in rational expressions, excluded values often arise from denominators that cannot be zero, as this would make the expression undefined. Identifying excluded values is crucial for accurately defining the domain of a function.
Any number that can be expressed as a fraction is a rational number otherwise it is an irrational number.
The expression written in the question is the rational expression.
There is no specific name. If the numerator and denominator are polynomials in the variable then the question describes an algebraic fraction. But there is no reason at all to assume that they are polynomials. There is no specific phrase that describes sin(x)/x, for example.
The paintings have a rational, ordered sense of space and no distracting objects.
I can see no rational expression below.
The expression is not factorable with rational numbers.
another rational expression.