The domain of the function f(x) = (x + 2)^-1 is whatever you choose it to be, except that the point x = -2 must be excluded.
If the domain comes up to, or straddles the point x = -2 then that is the equation of the vertical asymptote. However, if you choose to define the domain as x > 0 (in R), then there is no vertical asymptote.
Chat with our AI personalities
Asymptote's occur when your equation has a denominator of zero Holes may occur when your equation has both a numerator and denominator of zero So... The equation for the denominator equals zero is: x2-x-2 = 0 The equation for both the numerator and denominator equals zero is x - 2 = x2-x-2 = 0 For interests sake... lets solve it. ---- x2-x-2 = 0 (x+1)(x-2) = 0 x = -1, 2 x - 2 = x2-x-2 = 0 x - 2 = 0 x = 2 A vertical asymptote occurs at x = -1 A vertical asymptote or hole may appear at x = 2
It remains a vertical asymptote. Instead on going towards y = + infinity it will go towards y = - infinity and conversely.
false
Undefined
No. For example, in real numbers, the square root of negative numbers are not defined.