The definition of "similar" geometric figures requires that the ratios of all equivalent sides, between the two figures, are the same. For example, one side of one triangle divided by the equivalent side of the other triangle might result in a ratio of 3.5 - in this case, if the triangles are similar, you will get the same ratio if you compare other equivalent sides.
If and when two parallelograms are similar, you know that the ratio of two side lengths within one parallelogram will describe the relationship between the corresponding side lengths in a similar parallelogram. If and when two parallelograms are similar, you know that the ratio of corresponding side lengths in the other parallelogram will give you the scale factor that relates each side length in one parallelogram to the corresponding side length in a similar parallelogram.
super duper swagg
false
It is an example of a statement that is presented as a question with minimum of effort. Unfortunately, the minimum effort makes the question meaningless. There is no context given. As a result there are times when the statement within the question would be true and others when it would be false. Without the context it is impossible to tell and so it is a statement with no value whatsoever.
A right angle triangle has three sides and three interior angles one of which is 90 degrees. The names of its sides are the adjacent the opposite and the hypotenuse and using the 3 trig ratios we can find the interior angles or lengths of the sides depending on the information given.Tangent angle = opposite/adjacentSine angle = opposite/hypotenuseCosine angle = adjacent/hypotenuseIf we are given the lengths of 2 sides we can work out the angles with the above ratios.If we are given a length and an angle we can work out the lengths of the other 2 sides by rearranging the above ratios.
they both have the same ratios
There are no ratios that can be used for triangles that are not similar.
Trigonometric ratios are characteristics of angles, not of lengths. And, by definition, the corresponding angles an similar triangles have the same measures.
Similar triangles means they have the same lengths OR the corresponding lengths have equal ratios.
Yes, the corresponding sides of similar triangles have proportional lengths. This means that the ratios of the lengths of corresponding sides are equal. For example, if two triangles are similar, the ratio of the lengths of one triangle's sides to the lengths of the other triangle's corresponding sides will be the same across all three pairs of sides. This property is fundamental in solving problems related to similar triangles.
If two objects have the same shape, they are called "similar." When two figures are similar, the ratios of the lengths of their corresponding sides are equal. To determine if the triangles shown are similar, compare their corresponding sides.
In the context of similar triangles, if you have two triangles that are similar, the ratios of their corresponding sides are equal. For a specific calculation like "7 - 3," it seems there may be a misunderstanding, as this expression simplifies to 4, which does not directly relate to the properties of similar triangles. If you meant to ask about a specific problem involving similar triangles with side lengths or angles, please provide more details for a precise answer.
Yes. When a shape is enlarged the scale factor gives the ratio between corresponding lengths of the enlargement and the original.
Two figures are similar if they have the same shape but not necessarily the same size, which means their corresponding angles are equal, and the lengths of their corresponding sides are proportional. To determine similarity, you can compare the angles of both figures; if all corresponding angles are equal, the figures are similar. Additionally, you can check the ratios of the lengths of corresponding sides; if these ratios are consistent, the figures are also similar.
Yes, the ratio of the lengths of corresponding sides of similar figures is equal. This property holds true regardless of the size of the figures, meaning that if two figures are similar, the ratios of their corresponding side lengths will always be the same. This consistent ratio is called the scale factor, which can be used to compare the sizes of the figures.
Triangles are congruent if all three sides in one triangle are congruent to the corresponding sides in the other.When two triangles have corresponding sides with identical ratios, the triangles are similar.Of course if triangles are congruent, they are also similar.
No. In similar triangles, the ratios of the 3 pairs of corresponding sides are always equal.