answersLogoWhite

0

If it is a linear function, it is quite easy to solve the equation explicitly, using standard methods of equation-solving. For example, if you have "y" as a function of "x", you would have to solve the variable for "x".

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve

Add your answer:

Earn +20 pts
Q: How do you find for the zero of a linear function?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What are the zeros of a linear function?

The zeros, or roots, of a linear function is the point at which the line touches the x-axis. Since a linear function is a straight line, it has a maximum of one root (zero). The zero of a function can be determined by the highest degree (power) of the function. Since linear functions are only raised to the power of one, one is the total number of times the line can touch the x-axis. If you function is a horizontal line, it has no root, or zero.


How do you find a linear function?

By finding something who's behavior is represented by a linear function and graphing it.


What are the zeros of linear functions?

The zero of a linear function in algebra is the value of the independent variable (x) when the value of the dependent variable (y) is zero. Linear functions that are horizontal do not have a zero because they never cross the x-axis. Algebraically, these functions have the form y = c, where c is a constant. All other linear functions have one zero.


Examples of zeros of a linear function?

The zero of a linear function in algebra is the value of the independent variable (x) when the value of the dependent variable (y) is zero. Linear functions that are horizontal do not have a zero because they never cross the x-axis. Algebraically, these functions have the form y = c, where c is a constant. All other linear functions have one zero.For example, if your equation is 3x + 11y = 6, you would substitute zero for y, the term 11y would drop out of the equation and the equation would become 3x = 6x = 2


What is the end behavior of a linear function?

Assuming the domain is unbounded, the linear function continues to be a linear function to its end.