The zeros, or roots, of a linear function is the point at which the line touches the x-axis. Since a linear function is a straight line, it has a maximum of one root (zero). The zero of a function can be determined by the highest degree (power) of the function. Since linear functions are only raised to the power of one, one is the total number of times the line can touch the x-axis. If you function is a horizontal line, it has no root, or zero.
Chat with our AI personalities
Whether or not a function has zeros depends on the domain over which it is defined.For example, the linear equation 2x = 3 has no zeros if the domain is the set of integers (whole numbers) but if you allow rational numbers then x = 1.5 is a zero.A quadratic function such as x^2 = 2 has no rational zeros, but it does have irrational zeros which are sqrt(2) and -sqrt(2).Similarly, a quadratic equation need not have real zeros. It will have zeros if the domain is extended to the complex field.In the coordinate plane, a quadratic without zeros will either be wholly above the horizontal axis or wholly below it.
the zeros of a function is/are the values of the variables in the function that makes/make the function zero. for example: In f(x) = x2 -7x + 10, the zeros of the function are 2 and 5 because these will make the function zero.
Assuming the domain is unbounded, the linear function continues to be a linear function to its end.
No a linear equation are not the same as a linear function. The linear function is written as Ax+By=C. The linear equation is f{x}=m+b.
A linear equation can have only one zero and that is the value of the variable for which the equation is true.