The zeros, or roots, of a linear function is the point at which the line touches the x-axis. Since a linear function is a straight line, it has a maximum of one root (zero). The zero of a function can be determined by the highest degree (power) of the function. Since linear functions are only raised to the power of one, one is the total number of times the line can touch the x-axis. If you function is a horizontal line, it has no root, or zero.
Whether or not a function has zeros depends on the domain over which it is defined.For example, the linear equation 2x = 3 has no zeros if the domain is the set of integers (whole numbers) but if you allow rational numbers then x = 1.5 is a zero.A quadratic function such as x^2 = 2 has no rational zeros, but it does have irrational zeros which are sqrt(2) and -sqrt(2).Similarly, a quadratic equation need not have real zeros. It will have zeros if the domain is extended to the complex field.In the coordinate plane, a quadratic without zeros will either be wholly above the horizontal axis or wholly below it.
the zeros of a function is/are the values of the variables in the function that makes/make the function zero. for example: In f(x) = x2 -7x + 10, the zeros of the function are 2 and 5 because these will make the function zero.
Assuming the domain is unbounded, the linear function continues to be a linear function to its end.
No a linear equation are not the same as a linear function. The linear function is written as Ax+By=C. The linear equation is f{x}=m+b.
A linear equation can have only one zero and that is the value of the variable for which the equation is true.
The zeros, or roots, of a linear function is the point at which the line touches the x-axis. Since a linear function is a straight line, it has a maximum of one root (zero). The zero of a function can be determined by the highest degree (power) of the function. Since linear functions are only raised to the power of one, one is the total number of times the line can touch the x-axis. If you function is a horizontal line, it has no root, or zero.
The zeros, or roots, of a linear function is the point at which the line touches the x-axis. Since a linear function is a straight line, it has a maximum of one root (zero). The zero of a function can be determined by the highest degree (power) of the function. Since linear functions are only raised to the power of one, one is the total number of times the line can touch the x-axis. If you function is a horizontal line, it has no root, or zero.
Whether or not a function has zeros depends on the domain over which it is defined.For example, the linear equation 2x = 3 has no zeros if the domain is the set of integers (whole numbers) but if you allow rational numbers then x = 1.5 is a zero.A quadratic function such as x^2 = 2 has no rational zeros, but it does have irrational zeros which are sqrt(2) and -sqrt(2).Similarly, a quadratic equation need not have real zeros. It will have zeros if the domain is extended to the complex field.In the coordinate plane, a quadratic without zeros will either be wholly above the horizontal axis or wholly below it.
the zeros of a function is/are the values of the variables in the function that makes/make the function zero. for example: In f(x) = x2 -7x + 10, the zeros of the function are 2 and 5 because these will make the function zero.
No a linear equation are not the same as a linear function. The linear function is written as Ax+By=C. The linear equation is f{x}=m+b.
The integral zeros of a function are integers for which the value of the function is zero, or where the graph of the function crosses the horizontal axis.
Assuming the domain is unbounded, the linear function continues to be a linear function to its end.
No. An exponential function is not linear. A very easy way to understand what is and what is not a linear function is in the word, "linear function." A linear function, when graphed, must form a straight line.P.S. The basic formula for any linear function is y=mx+b. No matter what number you put in for the m and b variables, you will always make a linear function.
No a linear equation are not the same as a linear function. The linear function is written as Ax+By=C. The linear equation is f{x}=m+b.
A linear equation can have only one zero and that is the value of the variable for which the equation is true.
It is useful to know the linear factors of a polynomial because they give you the zeros of the polynomial. If (x-c) is one of the linear factors of a polynomial, then p(c)=0. Here the notation p(x) is used to denoted a polynomial function at p(c) means the value of that function when evaluated at c. Conversely, if d is a zero of the polynomial, then (x-d) is a factor.
zeros makes a matrix of the specified dimension, filled with zeros.