answersLogoWhite

0

Starting with the square matrix A, create the augmented matrix AI = [A:I] which represents the columns of A followed by the columns of I, the identity matrix.

Using elementary row operations only (no column operations), convert the left half of the matrix to the identity matrix. The right half, which started off as I, will now be the inverse of A.



Starting with the square matrix A, create the augmented matrix AI = [A:I] which represents the columns of A followed by the columns of I, the identity matrix.

Using elementary row operations only (no column operations), convert the left half of the matrix to the identity matrix. The right half, which started off as I, will now be the inverse of A.



Starting with the square matrix A, create the augmented matrix AI = [A:I] which represents the columns of A followed by the columns of I, the identity matrix.

Using elementary row operations only (no column operations), convert the left half of the matrix to the identity matrix. The right half, which started off as I, will now be the inverse of A.



Starting with the square matrix A, create the augmented matrix AI = [A:I] which represents the columns of A followed by the columns of I, the identity matrix.

Using elementary row operations only (no column operations), convert the left half of the matrix to the identity matrix. The right half, which started off as I, will now be the inverse of A.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Algebra

How do you find the inverse of a 10x2 matrix?

A non-square matrix cannot be inverted.


What is an orthogonal matrix?

A matrix A is orthogonal if itstranspose is equal to it inverse. So AT is the transpose of A and A-1 is the inverse. We have AT=A-1 So we have : AAT= I, the identity matrix Since it is MUCH easier to find a transpose than an inverse, these matrices are easy to compute with. Furthermore, rotation matrices are orthogonal. The inverse of an orthogonal matrix is also orthogonal which can be easily proved directly from the definition.


How do you find the inverse of A in system of linear equation and matrices?

First, we need to recall that a linear equation does not involve any products or roots of variables. All variables occur only to the first power and do not appear as arguments for trigonometric, logarithmic, or exponential functions. For example, x + √y = 4, y = sin x, and 2x + y - z + yz = 5 are not linear.To solve a system of equations such as3x + y = 52x - y = 3all information required for the solution is emboded in the augmented matrix (imagine that I put those information into a rectangular arrays)3 1 52 -1 3and that the solution can be obtained by performing appropriate operations on this matrix.The matrix of this system linear equations is a square matrix A such as3 12 -1Think this matrix asa bc dTo find an inverse of this square matrix A (2 x 2), we need to find a matrix B of the same size such that AB = I and BA = I, then A is said to be invertible and B is called the inverse of A. If no such a matrix can be found, then A is said to be singular.An invertible matrix has exactly one inverse.A square matrix A is invertible if ad - bc ≠ 0 (where ad - bc is the determinant)The formula of finding the inverse of a square matrix A isA-1 = [1/(ad - bc)][d -b the second row -c a](I'm sorry, I can't draw the arrays)So let's find the inverse of our example.A-1 = [1/(-3 -2)][-1 -1 the second row -2 3] = [-1/-5 -1/-5 the sec. row -2/-5 3/-5] =1/5 1/52/5 -3/5A n x m matrix cannot have an inverse. A n x n matrix may or may not have an inverse.To find the inverse of a n x n matrix we should to adjoin the identity matrix to the right side of A, thereby producing a matrix of the form [A | I]. Then we should apply row opperations to this matrix until the left side is reduced to I. This opperations will convert the right side to A-1, so the final matrix will have the form [I |A-1 ].(There are many other methods how to find the inverse of a n x n matrix, but I can't show them by examples. I am so sorry that I can't be so much useful to you).


Find the additive inverse of 9?

9


How do you find the additive inverse of an integer?

Change its sign.

Related Questions

What are the applications of det of a matrix?

it is used to find the inverse of the matrix. inverse(A)= (adj A)/ mod det A


How to find the Inverse of a square symmetric matrix?

You can factorize the matrix using LU or LDLT factorization algorithm. inverse of a diagonal matrix (D) is really simple. To find the inverse of L, which is a lower triangular matrix, you can find the answer in this link.www.mcs.csueastbay.edu/~malek/TeX/Triangle.pdfSince (A T )-1 = (A-1 )T for all matrix, you'll just have to find inverse of L and D.


How to find the inverse of a square matrix?

You can factorize the matrix using LU or LDLT factorization algorithm. inverse of a diagonal matrix (D) is really simple. To find the inverse of L, which is a lower triangular matrix, you can find the answer in this link.www.mcs.csueastbay.edu/~malek/TeX/Triangle.pdfSince (A T )-1 = (A-1 )T for all matrix, you'll just have to find inverse of L and D.


How to find the inverse of a symmetric matrix?

You can factorize the matrix using LU or LDLT factorization algorithm. inverse of a diagonal matrix (D) is really simple. To find the inverse of L, which is a lower triangular matrix, you can find the answer in this link.www.mcs.csueastbay.edu/~malek/TeX/Triangle.pdfSince (A T )-1 = (A-1 )T for all matrix, you'll just have to find inverse of L and D.


How do you find a variable in a matrix if there is no inverse?

The fact that the matrix does not have an inverse does not necessarily mean that none of the variables can be found.


How do you find the inverse of a 10x2 matrix?

A non-square matrix cannot be inverted.


How do you find original matrix from its inverse matrix?

To find the original matrix of an inverted matrix, simply invert it again. Consider A^-1^-1 = A^1 = A


How do you find inverse of a matrix in Casio fx-991MS scientific calculators?

To find the inverse of a matrix on a Casio fx-991MS scientific calculator, you first need to input the matrix you want to find the inverse of. Then, press the "SHIFT" button followed by the "MODE" button to access the matrix mode. Select the matrix you want to invert by pressing the corresponding number key. Next, press the "SHIFT" button followed by the "MATRIX" button, and then press the "x^-1" button to calculate the inverse of the matrix.


How do you inverse matrix using fx-991ms calculator?

To find the inverse of a matrix using the Casio fx-991MS calculator, first, enter the matrix mode by pressing the "MODE" button until you reach the matrix option. Then, input the dimensions of the matrix (e.g., 2 for a 2x2 matrix). After entering the matrix elements, press the "SHIFT" button followed by the "MATRIX" key (which is also labeled with an inverse symbol). Finally, select the matrix you want to invert, and the calculator will display the inverse matrix.


How do you use casio fx-991ms to solve matrices inverse?

To find the inverse of a matrix using the Casio fx-991MS, first, ensure your calculator is in matrix mode by pressing the MODE button and selecting matrix. Then, input your matrix by pressing SHIFT followed by MATRIX, selecting a matrix (e.g., A), and entering the dimensions and elements. After the matrix is entered, access the matrix menu again, select your matrix, and press the SHIFT button followed by the x^-1 key to compute the inverse. The calculator will display the inverse matrix if it exists.


What is an orthogonal matrix?

A matrix A is orthogonal if itstranspose is equal to it inverse. So AT is the transpose of A and A-1 is the inverse. We have AT=A-1 So we have : AAT= I, the identity matrix Since it is MUCH easier to find a transpose than an inverse, these matrices are easy to compute with. Furthermore, rotation matrices are orthogonal. The inverse of an orthogonal matrix is also orthogonal which can be easily proved directly from the definition.


Why order doesn't matter when you find inverse of the matrix specificly?

When finding the inverse of a matrix, order doesn't matter because the operation of taking the inverse is inherently defined for square matrices. Specifically, if ( A ) is an invertible matrix, then its inverse ( A^{-1} ) satisfies the property ( A A^{-1} = I ) and ( A^{-1} A = I ), where ( I ) is the identity matrix. This means that multiplying ( A ) by its inverse will always yield the identity matrix, regardless of the order in which the matrices are multiplied. However, note that the order does matter when multiplying different matrices together; it's only the specific case of a matrix and its inverse that ensures commutativity in this regard.