x = 45 degrees sin(x) = cos(x) = 1/2 sqrt(2)
SQRT(3)/4 - 1/4
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
1 cot(theta)=cos(theta)/sin(theta) cos(45 degrees)=sqrt(2)/2 AND sin(45 degrees)=sqrt(2)/2 cot(45 deg)=cos(45 deg)/sin(deg)=(sqrt(2)/2)/(sqrt(2)/2)=1
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
cos(35)sin(55)+sin(35)cos(55) If we rewrite this switching the first and second terms we get: sin(35)cos(55)+cos(35)sin(55) which is a more common form of the sin sum and difference formulas. Thus this is equal to sin(90) and sin(90)=1
In degrees? cos(35˚) = .81915, sin(24˚) = .40673;cos(35˚) * sin(24˚) = .33318In radians? cos(35) = -.90367, sin(24) = -.90558;cos(35) * sin(24) = .81836A calculator will achieve these results faster than wiki.answers. 9 times out of 10, at least.:-)
Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) × 8(cos 15 + i sin 15) = 5×8 × (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i² sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)
cos(125) = cos(180 - 55) = cos(180)*cos(55) + sin(180)*sin(55) = -cos(55) since cos(180) = -1, and sin(180) = 0 So A = 55 degrees.
cos(73°) = sin(17°) = ~0.29237
x = 45 degrees sin(x) = cos(x) = 1/2 sqrt(2)
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
sin(35 deg) = 0.5736
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
cos 71
One relationship is: cos(x) = sin(90° - x) if you use degrees. Or in radians: cos(x) = sin(pi/2 - x) Another relationship is the pythagorean identity.
to find sin 35 here we take the angle = x=15 then 3x=45 , 4x=60 then 4x-3x=60-45 then by putting sin on rhs we will get cos 35 and sin 35 hope it helped you