cos 71
The cofunction identity for cosine states that the cosine of an angle is equal to the sine of its complement. Specifically, this can be expressed as (\cos(t) = \sin\left(\frac{\pi}{2} - t\right)) in radians or (\cos(t) = \sin(90^\circ - t)) in degrees. This relationship highlights the complementary nature of the sine and cosine functions.
Sin(19) = 0.3256 approx.
Sin theta of 30 degrees is1/2
My calculator tells me that sin 58 degrees = 0.84805
Sin(37) is 0.602
cos 60
The cofunction identity for cosine states that the cosine of an angle is equal to the sine of its complement. Specifically, this can be expressed as (\cos(t) = \sin\left(\frac{\pi}{2} - t\right)) in radians or (\cos(t) = \sin(90^\circ - t)) in degrees. This relationship highlights the complementary nature of the sine and cosine functions.
Sin(19) = 0.3256 approx.
sine 10. Use the cofunction with the complementary angle.
sec x - cos x = (sin x)(tan x) 1/cos x - cos x = Cofunction Identity, sec x = 1/cos x. (1-cos^2 x)/cos x = Subtract the fractions. (sin^2 x)/cos x = Pythagorean Identity, 1-cos^2 x = sin^2 x. sin x (sin x)/(cos x) = Factor out sin x. (sin x)(tan x) = (sin x)(tan x) Cofunction Identity, (sin x)/(cos x) = tan x.
The sine of 57 degrees is approximately 0.8387.
all sin is sin97 degrees Fahrenheit = 36.1 degrees Celsius
Sin(X) = 0.9 X = Sin^(-1) 0.9 X = 64.158... degrees.
Sin theta of 30 degrees is1/2
cos(α) = sin(90° - α) → cos(16° + θ) = sin(90° - (16° + θ)) = sin(74° - θ) → sin(36° + θ) = cos(16° + θ) → sin((36° + θ) = sin(74° - θ) → 36° + θ = 74° - θ → 2θ = 38° → θ = 19° → θ = 19 °+ 180°n for n= 0, 1, 2, ...
sin(90) = 1
It is:- sin(40) = 0.6427876097