That depends! The identity operator must map something from a space X to a space Y. This mapping might be continuous - which is the case if the identify operator is bounded - or discontinuous - if the identity operator is unbounded.
Chat with our AI personalities
No it is NOT always bounded. Here is an example of an unbounded one. 1. 2x-y>-2 2. 4x+y
Assuming the domain is unbounded, the linear function continues to be a linear function to its end.
What is the area bounded by the graph of the function f(x)=1-e^-x over the interval [-1, 2]?
Surely, you should check the value of the function at the boundaries of the region first. Rest depends on what the function is.
The inverse of the inverse is the original function, so that the product of the two functions is equivalent to the identity function on the appropriate domain. The domain of a function is the range of the inverse function. The range of a function is the domain of the inverse function.