No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.
No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.
No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.
No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.
Chat with our AI personalities
No, a measurable function may have a finite number of discontinuities (for the Riemann measure), or a countably infinite number of discontinuities (for the Lebesgue measure). It should also be bounded (have some upper and lower bound, or limit, in the domain that is being measured), to be measureable. At least, some unbounded functions are not measurable.
yes, every continuous function is integrable.
Yes, a corner is continuous, as long as you don't have to lift your pencil up then it is a continuous function. Continuous functions just have no breaks, gaps, or holes.
Yes. For every measurable function, f there's a sequence of simple functions Fn that converge to f m-a.e (wich means for each e>0, there's X' such that Fn|x' -->f|x' and m(X\X')<e).
They are both continuous, symmetric distribution functions.
The similarities are that they are polynomial functions and therefore continuous and differentiable.A real cubic will has an odd number of roots (and so must have a solution), a quartic has an even number of roots and so may have no solutions.