Oh, dude, an oval has an infinite number of lines of symmetry, so technically it has infinite rotational symmetry. But like, who's really gonna sit there and rotate an oval forever just to prove a point, right? So, yeah, infinite rotational symmetry for the win!
none shapes have 1 rotational symmetry because in rotational symmetry one is none
6 i think.....
All of them have rotational symmetry because all the sides and angles have to be the same in order for the polygon to be a regular polygon
Oh, dude, a regular hexagon has six sides, so it has six lines of symmetry. Each line of symmetry represents a different way you can rotate the hexagon and have it look the same. So, the order of rotational symmetry for a regular hexagon is 6. Like, it's symmetry, but make it hexagonal.
Equilateral triangles have rotational symmetry.
2
Rotational symmetry counts how many times a shape will fit onto itself when it is rotated 360°. When an oval (I assume you mean an ellipse) is rotated it will fit onto itself after 180°, thus it has rotational symmetry (of order 2).
Yes. An ellipse (oval) has two lines of symmetry, but not a rotational symmetry. A parabola has one line and no rotation.
A line has rotational symmetry of order 2.
Nothing has 1 order of rotational symmetry because in rotational symmetry 1 is none.
It has rotational symmetry to the order of 2
Are you referring to the Marquise Cut in Diamond jewelry? This is in the shape of a pointed oval; it would two-fold rotational symmetry.
If it is a regular octagon then it has rotational symmetry to the order of 8
It does have rotational symmetry of order three.
A parallelogram has rotational symmetry of order 2.
no shape does! * * * * * Not true. A parallelogram has rotational symmetry of order 2, but no lines of symmetry.
if you mean rotational symmetry then yes, rotational symmetry of order 4