An oval typically has two lines of symmetry, which means it has an order of rotational symmetry of two. This means that the oval looks the same after a 180-degree rotation. The center of rotation would be the point where the two axes of symmetry intersect. The oval does not have any other rotational symmetries due to its asymmetrical shape.
Chat with our AI personalities
none shapes have 1 rotational symmetry because in rotational symmetry one is none
6 i think.....
All of them have rotational symmetry because all the sides and angles have to be the same in order for the polygon to be a regular polygon
Oh, dude, a regular hexagon has six sides, so it has six lines of symmetry. Each line of symmetry represents a different way you can rotate the hexagon and have it look the same. So, the order of rotational symmetry for a regular hexagon is 6. Like, it's symmetry, but make it hexagonal.
A rectangle
2
Rotational symmetry counts how many times a shape will fit onto itself when it is rotated 360°. When an oval (I assume you mean an ellipse) is rotated it will fit onto itself after 180°, thus it has rotational symmetry (of order 2).
Yes. An ellipse (oval) has two lines of symmetry, but not a rotational symmetry. A parabola has one line and no rotation.
A line has rotational symmetry of order 2.
Nothing has 1 order of rotational symmetry because in rotational symmetry 1 is none.
It has rotational symmetry to the order of 2
Are you referring to the Marquise Cut in Diamond jewelry? This is in the shape of a pointed oval; it would two-fold rotational symmetry.
If it is a regular octagon then it has rotational symmetry to the order of 8
It does have rotational symmetry of order three.
no shape does! * * * * * Not true. A parallelogram has rotational symmetry of order 2, but no lines of symmetry.
A parallelogram has rotational symmetry of order 2.
parallelogram * * * * * A parallelogram does have rotational symmetry (order 2).