The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)
log(478) = e10e = 478
10^a=300.. apex!
Log=ea 47.38
b^x In general the log and the exponential are inverses.
The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)
log(478) = e10e = 478
Log 200=a can be converted to an exponential equation if we know the base of the log. Let's assume it is 10 and you can change the answer accordingly if it is something else. 10^a=200 would be the exponential equation. For a base b, we would have b^a=200
10^a=300.. apex!
Log=ea 47.38
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.
The graph of is shifted 3 units down and 2 units right. Which equation represents the new graph?
Here's logarithmic form: 1 log ^ 10 Now here's the same thing in exponential form: 10^1 So basically it's just two different ways of writing the same thing. Remember that log is always base "10" unless otherwise specified
Take log each side, but most important to take log of 9.7 log(9.7) = 0.9867717343 now by the law of logs 10^0.9867717343 = 9.7 ( so the 10^X = 9.7 is the exponential form )
9x = 27 log(9) + log(x) = log(27) log(x) = log(27) - log(9) log(x) = log(27/9) 10log(x) = 10log(27/9) x = 27/9 x = 3 This strikes us as the method by which the federal government might solve the given equation ... after appointing commissions to study the environmental impact and recommend a method of solution, of course.
b^x In general the log and the exponential are inverses.
A logarithmic equation would be any equation that includes the log function.