Best Answer

The graph of is shifted 3 units down and 2 units right. Which equation represents the new graph?

Q: Which is the exponential form of log 8 x equals 3?

Write your answer...

Submit

Still have questions?

Continue Learning about Other Math

log2(8) = 3 means (2)3 = 8

Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.

Using the natural (base e) logs, written as "ln", 3 is eln(3) and 5 is eln(5). Or in base 10, 3=10log(3) and 5=10log(5). Check it out by taking log of both sides: log(3) = log(10log(3)) = log(3) x log(10) =log(3) x 1=log(3).

Two to the sixth power. 8 with an exponent of 2 equals 64 and 4 with an exponent of 3 equals 64

2x2x3x5x5x5 in exponential form is: 22 x 3 x 53

Related questions

log2(8) = 3 means (2)3 = 8

Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.

Using the natural (base e) logs, written as "ln", 3 is eln(3) and 5 is eln(5). Or in base 10, 3=10log(3) and 5=10log(5). Check it out by taking log of both sides: log(3) = log(10log(3)) = log(3) x log(10) =log(3) x 1=log(3).

Exponential form is ax = b. Logarithmic form is logab = x. For example, 102 = 100 is the same as log10100 = 2. Another example: 53 = 125 is the same as log5125 = 3. If there is no number under the log (for example, log3), the the number is understood to be ten. For example, log8 is the same as log108. A natural log uses the symbol ln. In this case, the number is understood to be e (which equals about 2.718). For example, ln5 is the same as loge5 (which the same as log2.7185).

Two to the sixth power. 8 with an exponent of 2 equals 64 and 4 with an exponent of 3 equals 64

Logb (x)=y is called the logarithmic form where logb means log with base b So to put this in exponential form we let b be the base and y the exponent by=x Here is an example log2 8=3 since 23 =8. In this case the term on the left is the logarithmic form while the one of the right is the exponential form.

2x2x3x5x5x5 in exponential form is: 22 x 3 x 53

If the log of x equals -3 then x = 10-3 or 0.001or 1/1000.

30 in exponential form is 3 x 101.

3 = 3.0 × 100

3*3*3*3*3

exponential form