0
The product-moment correlation coefficient or PMCC should have a value between -1 and 1. A positive value shows a positive linear correlation, and a negative value shows a negative linear correlation. At zero, there is no linear correlation, and the correlation becomes stronger as the value moves further from 0.
1
(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity. (c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, provided r > 0. (d) Regression coefficients are independent of the changes of origin but not of scale.
You calculate a correlation coefficient and test to see if it is statistically different from 0.
0
A serious error. The maximum magnitude for a correlation coefficient is 1.The Correlation coefficient is lies between -1 to 1 if it is 0 mean there is no correlation between them. Here they are given less than -1 value so it is not a value of correlation coefficient.
The weakest correlation coefficient is 0, which means there is absolutely no relationship between the two variables you are correlating.
34.32245Correlation coefficient is less than -1 and greater than 1.Note: The Correlation coefficient is lies between -1 to 1 if it is 0 mean there is no correlation between them.
The further the correlation coefficient is from 0 (ie the closer to ±1) the stronger the correlation.Therefore -0.75 is a stronger correlation than 0.25The strength of the correlation is dependant on the absolute value of the correlation coefficient; the sign of the correlation coefficient gives the "relative" slope of correlation line:+ve (0 to +1) means that as one variable increases the other also increases;-ve (0 to -1) means that as one variable increases the other decreases.
If the correlation coefficient is 0, then the two tings vary separately. They are not related.
Correlation coefficient is a measure of the strength and direction of a relationship between two variables. It quantifies how closely the two variables are related and ranges from -1 (perfect negative correlation) to 1 (perfect positive correlation), with 0 indicating no correlation.
The product-moment correlation coefficient or PMCC should have a value between -1 and 1. A positive value shows a positive linear correlation, and a negative value shows a negative linear correlation. At zero, there is no linear correlation, and the correlation becomes stronger as the value moves further from 0.
The correlation coefficient ranges from 0 to ±1. The sign of the correlation coefficient shows the correlation as positive (as one increases so does the other) or negative (as one increases the other decreases). 0 represent no correlation and ±1 represents perfect correlation. The further from 0 towards ±1, the stronger the correlation, ie the greater the absolute value* of the correlation coefficient the stronger the correlation. To have a stronger correlation than -0.54 the absolute value must be greater than 0.54; ie all correlation coefficients that are less than -0.54 (eg -0.6, -0.9) and all those greater than +0.54 (eg 0.7, 0.95) are stronger correlations. Mathematically speaking, all those with a correlation coefficient r such that |r| > 0.54 *The absolute value of a number is the number ignoring its sign (ie how far it is away from 0 ignoring the direction along the number line), eg |56| = 56 |-45| = 45 |-56| = 56 Thus |-56| = |56| = 56.
1
Yes.The Pearson correlation coefficient ranges from -1 to 1 inclusive.The sign of the coefficient tells you the kind of correlation:positive: as one variable increases the other also increases (like y = x)negative: as one variable increases the other decreases (like y = -x)0 means no correlation |r| = 1 means perfect correlation
The correlation coefficient for two variables is a measure of the degree to which the variables change together. The correlation coefficient ranges between -1 and +1. At +1, the two variables are in perfect agreement in the sense that any increase in one is matched by an increase in the other. An increase of twice as much in the first is accompanied by double the increase in the second. A correlation coefficient of -1 indicates that the two variables are in perfect opposition. The changes in the two variables are similar to when the correlation coefficient is +1, but this time an increase in one variable is accompanied by a decrease in the other. A correlation coefficient near 0 indicates that the two variables do not move in harmony. An increase in one is as likely to be accompanied by an increase in the other variable as a decrease. It is very very important to remember that a correlation coefficient does not indicate causality.