Expanded Notation of 267,853 = (2 x 105) + (6 x 104) + (7 x 103) + (8 x 102) + (5 x 101) + (3 x 100).
0.384 in expanded notation using exponential notation is: (0 x 10^0) + (3/10^1) + (8/10^2) + (4/10^3)
2x10^6
68.1049 in expanded notation using exponential form is (6 x 101) + (8 x 100) + (1/101) + (0/102) + (4/103) + (9/104)
2.5 x 105 = 250,000
Expanded Notation of 80 = (8 x 101) + (0 x 100).
Expanded Notation of 456 = (4 x 102) + (5 x 101) + (6 x 100)
Expanded Notation of 1,294 = (1 x 103) + (2 x 102) + (9 x 101) + (4 x 100)
Expanded Notation of 1,294 = (1 x 1,000) + (2 x 100) + (9 x 10) + (4 x 1)
Expanded Notation of 5,280 = (5 x 10^3) + (2 x 10^2) + (8 x 10^1) + (0 x 10^0)
Expanded Notation of 2784 = (2 x 103) + (7 x 102) + (8 x 101) + (4 x 100).
Expanded Notation of 1,760 = (1 x 10^3) + (7 x 10^2) + (6 x 10^1) + (0 x 10^0)
Expanded Notation of 267,853 = (2 x 105) + (6 x 104) + (7 x 103) + (8 x 102) + (5 x 101) + (3 x 100).
Expanded Notation written using the powers of 10 This is an extension of writing the equation in expanded notation! Therefore I will use the information from that to explain; First I'll do out a table showing powers 10^2 = 100 10 to the power of 2 is One Hundred (2 zero's-after the 1) So hopefully you see the pattern in the above table!
0.384 in expanded notation using exponential notation is: (0 x 10^0) + (3/10^1) + (8/10^2) + (4/10^3)
419,854,000
(4 * 103) + (7 * 102) + (6 * 101) + (8 * 100).