81 = square of nine
n > -27
A = s^2 81 in^2 = s^2 √(81 in^2) = √s^2 9 in = s Thus the side of the square is 9 inches.
s= -8 + n, or s=n - 8, where s is the sum and n is the number
The formula for the standard deviation of a sample (s) is given by: s =√(⅟₍n₌₁₎Σ(y-ȳ)²) where y are the data points and ȳ is their mean; it can be rearranged to give: s = √(⅟₍n₌₁₎(Σy² - n((Σy)/n)²) → s = √(⅟₍₅₌₁₎(1815 - 5(⁹⁵/₅)²) → s = √(¼ × 10) → s = √2.5
multiplication is point to point and convolustion is point to multi-point ex multiplication-- s[n]=x[n].h[n] s[0]=[x[0].h[0] s[1]=[x[1].h[1] s[2]=[x[2].h[2] . . . .. s[n-1]=[x[n-1].h[n-1] convollustion s[n]=x[n]*h[n] s[0]=[x[0].h[0]+x[0].h[1]+x[0].h[2]+.......+x[0].h[n-1] s[1]=[x[1].h[0]+x[1].h[1]+x[1].h[2]+.......+x[1].h[n-1] s[2]=[x[2].h[2]+x[2].h[1]+x[2].h[2]+.......+x[2].h[n-1] . . . s[n-1]=[x[n-1].h[0]+x[n-1].h[1]+x[n-1].h[2]+.......+x[n-1].h[n-1].
n+81
21 N 81 E is India
There are an infinite number of sets with mean 80. Here are some: {80, 80, 80}, {80, 80, 80, 80, 80, 80} {79, 80, 81}, {79, 79, 80, 81, 81}, {79, 79, 80, 82} (1, 80, 159}, {-40, 200} To produce a set of n numbers with mean 80, start with any set of n-1 numbers. Suppose their sum is S. Then add the number 80*n-S to the set. You will now have n numbers whose sum is S+80*n-S = 80*n So the mean of this set is 80.
81 squares on a sudoku grid
9n+9=81 9n=72 n=8
if the question were 81 S in a S P the answer would be 81 Squares in a Sudoku Puzzle so the extra S letter is a mystery unless 81 Squares in a Standard Sudoku Puzzle as there are other variations
Ang "Ekonomiks" ay isinulat ni Dr. R. A. M. P. E. D. A. L. O. N. S. A. I. A. N. N. A. N. I. O. S. D. I. N. A. M. A. T. O. T. A. N. D. A. N. G. A. N. G. I. S. A. I. N. A. N. G. K. A. I. S. I. K. A. I. N. A. A. P. A. R. N. G. K. A. L. A. M. A. I. N. T. A. I. N. G. A. P. A. R. A. I. A. P. I. N. I. N. I. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A. N. S. A.
three
n is a square of a rational number. For example, 4 or 81, or 2.25 or 36/25.n is a square of a rational number. For example, 4 or 81, or 2.25 or 36/25.n is a square of a rational number. For example, 4 or 81, or 2.25 or 36/25.n is a square of a rational number. For example, 4 or 81, or 2.25 or 36/25.
n= .81 repeating 100n = 81.81 -1n -1n 99n= 81 81/99 81 over 99 is the final answer.
Latitudinal extent = 12'N and 56'S Longitudinal extent = 35'W and 81'W
n > -27