answersLogoWhite

0

there are three methods: combination, substitution and decomposition.

User Avatar

Wiki User

16y ago

What else can I help you with?

Continue Learning about Algebra

What is the situation when two linear inequalities have no common solution?

To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent).


How would you know if a linear system has a solution?

One way is to look at the graphs of these equations. If they intersect, the point of intersection (x, y) is the only solution of the system. In this case we say that the system is consistent. If their graphs do not intersect, then the system has no solution. In this case we say that the system is inconsistent. If the graph of the equations is the same line, the system has infinitely simultaneous solutions. We can use several methods in order to solve the system algebraically. In the case where the equations of the system are dependent (the coefficients of the same variable are multiple of each other), the system has infinite number of solutions solution. For example, 2x + 3y = 6 4y + 6y = 12 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. Try to solve this system of equations, 2x + 3y = 6 4x + 6y = 7 If you use addition or subtraction method, and you obtain a peculiar result such that 0 = 5, actually you have shown that the system has no solution (there is no point that satisfying both equations). When you use the substitution method and you obtain a result such that 5 = 5, this result indicates no solution for the system.


Which method of solving quadratic equations should be used when only an estimated solution is necessary?

Graphing


Why is substitution the best method in solving systems of equations?

It is not always the best method, sometimes elimination is the way you should solve systems. It is best to use substitution when you havea variable isolated on one side


Compare the symbolic method for solving linear equations to the methods of using a table or graph?

Equations = the method

Related Questions

What is the situation when two linear inequalities have no common solution?

To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent).


What has the author G R Lindfield written?

G. R. Lindfield has written: 'Modifications of the continuation method for the solution of systems of nonlinear equations'


What are the similarities and difference of substitution method and linear combinations method?

Both the substitution method and the linear combinations method (or elimination method) are techniques used to solve systems of linear equations. In the substitution method, one equation is solved for one variable, which is then substituted into the other equation. In contrast, the linear combinations method involves adding or subtracting equations to eliminate one variable, allowing for the direct solution of the remaining variable. While both methods aim to find the same solution, they differ in their approach to manipulating the equations.


What has the author Jeffrey S Scroggs written?

Jeffrey S. Scroggs has written: 'An iterative method for systems of nonlinear hyperbolic equations' -- subject(s): Algorithms, Hyperbolic Differential equations, Iterative solution, Nonlinear equations, Parallel processing (Computers)


How would you know if a linear system has a solution?

One way is to look at the graphs of these equations. If they intersect, the point of intersection (x, y) is the only solution of the system. In this case we say that the system is consistent. If their graphs do not intersect, then the system has no solution. In this case we say that the system is inconsistent. If the graph of the equations is the same line, the system has infinitely simultaneous solutions. We can use several methods in order to solve the system algebraically. In the case where the equations of the system are dependent (the coefficients of the same variable are multiple of each other), the system has infinite number of solutions solution. For example, 2x + 3y = 6 4y + 6y = 12 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. Try to solve this system of equations, 2x + 3y = 6 4x + 6y = 7 If you use addition or subtraction method, and you obtain a peculiar result such that 0 = 5, actually you have shown that the system has no solution (there is no point that satisfying both equations). When you use the substitution method and you obtain a result such that 5 = 5, this result indicates no solution for the system.


What is the method of Solution of Partial Differential Equations by Jacobi Method?

The Jacobi method for solving partial differential equations (PDEs) is an iterative numerical technique primarily used for linear problems, particularly in the context of discretized equations. It involves decomposing the PDE into a system of algebraic equations, typically using finite difference methods. In each iteration, the solution is updated based on the average of neighboring values from the previous iteration, which helps converge to the true solution over time. This method is particularly useful for problems with boundary conditions and can handle large systems efficiently, although it may require many iterations for convergence.


How do you find the solution set of pair linear equations?

By the substitution method By the elimination method By plotting them on a graph


Solving the system of equations by graphing?

Solving a system of equations by graphing involves plotting the equations on the same coordinate plane and finding the point(s) where the graphs intersect, which represents the solution(s) to the system. Each equation corresponds to a line on the graph, and the intersection point(s) are where the x and y values satisfy both equations simultaneously. This method is visually intuitive but may not always provide precise solutions, especially when dealing with non-linear equations or when the intersection point is not easily identifiable due to the scale or nature of the graphs.


What is the answer to The solution to this system of equations lies between the x-values -2 and -1.5. At which x-value are the two equations approximately equal?

To find the x-value where the two equations are approximately equal between -2 and -1.5, you would typically evaluate the two equations at various points in that range. By checking values or using methods such as graphing or numerical approximation (like the bisection method), you can determine the specific x-value where the equations intersect. Without specific equations provided, it's impossible to give an exact answer, but the solution lies in that interval.


What is graphing method?

In systems of equations, the graphing method is solving x and y by graphing out the two equations. x and y being the coordinates of the two line's intersection.


What are the benefits and shortcomings of each method of systems of equations?

The answer will depend on what the "each method" refer to. The question provides no clue.


How do you slove systems of two equations?

To solve a system of two equations, you can use one of three methods: substitution, elimination, or graphing. In the substitution method, you solve one equation for one variable and substitute that expression into the other equation. In the elimination method, you manipulate the equations to eliminate one variable by adding or subtracting them. Graphing involves plotting both equations on a graph and identifying their point of intersection, which represents the solution.