To find the area of a circle when given the circumference, you can use the formula A = (C^2) / (4π), where A is the area, C is the circumference, and π is approximately 3.14159. Plugging in the given circumference of 62.8 inches, the formula becomes A = (62.8^2) / (4 * 3.14159) = 992.02 square inches. Therefore, the area of the circle with a circumference of 62.8 inches is approximately 992.02 square inches.
Chat with our AI personalities
Ah, what a lovely question! To find the area of a circle when you know the circumference, you can use the formula A = (C^2) / (4π), where A is the area and C is the circumference. Plugging in the circumference of 62.8 inches, we get A = (62.8^2) / (4π) ≈ 314.16 square inches. Just like painting a happy little circle, you've calculated the area with ease!
Circumference = 2 pi r = 62.8 so r = 31.4/pi = 10
Area = pi r2 = 100 pi = 314 in2
Just think of how many possibilities you have for each digit. 10x9x8x7x6x5x4x3x2 or 10 factorial is 3 628 800.
The Babylonians, as early as 1800 BC (displayed on Old Babylonian clay tablets) could solve a pair of simultaneous equations of the form: : which are equivalent to the equation:[1] : The original pair of equations were solved as follows: # Form # Form # Form # Form # Find by inspection of the values in (1) and (4).[2] In the Sulba Sutras in ancient India circa 8th century BCE quadratic equations of the form ax2 = c and ax2 + bx = c were explored using geometric methods. Babylonian mathematicians from circa 400 BCE and Chinese mathematicians from circa 200 BCE used the method of completing the square to solve quadratic equations with positive roots, but did not have a general formula. Euclid, the Greek mathematician, produced a more abstract geometrical method around 300 BCE. In 628 CE, Brahmagupta gave the first explicit (although still not completely general) solution of the quadratic equation: : " To the absolute number multiplied by four times the [coefficient of the] square, add the square of the [coefficient of the] middle term; the square root of the same, less the [coefficient of the] middle term, being divided by twice the [coefficient of the] square is the value. (Brahmasphutasiddhanta (Colebrook translation, 1817, page 346)[2] " This is equivalent to: :The Bakhshali Manuscript dated to have been written in India in the 7th century CE contained an algebraic formula for solving quadratic equations, as well as quadratic indeterminate equations (originally of type ax/c = y). Mohammad bin Musa Al-kwarismi (Persia, 9th century) developed a set of formulae that worked for positive solutions. Abraham bar Hiyya Ha-Nasi (also known by the Latin name Savasorda) introduced the complete solution to Europe in his book Liber embadorum in the 12th century. Bhāskara II (1114-1185), an Indian mathematician-astronomer, gave the first general solution to the quadratic equation with two roots.[3] The writing of the Chinese mathematician Yang Hui (1238-1298 AD) represents the first in which quadratic equations with negative coefficients of 'x' appear, although he attributes this to the earlier Liu Yi. The Babylonians, as early as 1800 BC (displayed on Old Babylonian clay tablets) could solve a pair of simultaneous equations of the form: : which are equivalent to the equation:[1] : The original pair of equations were solved as follows: # Form # Form # Form # Form # Find by inspection of the values in (1) and (4).[2] In the Sulba Sutras in ancient India circa 8th century BCE quadratic equations of the form ax2 = c and ax2 + bx = c were explored using geometric methods. Babylonian mathematicians from circa 400 BCE and Chinese mathematicians from circa 200 BCE used the method of completing the square to solve quadratic equations with positive roots, but did not have a general formula. Euclid, the Greek mathematician, produced a more abstract geometrical method around 300 BCE. In 628 CE, Brahmagupta gave the first explicit (although still not completely general) solution of the quadratic equation: : " To the absolute number multiplied by four times the [coefficient of the] square, add the square of the [coefficient of the] middle term; the square root of the same, less the [coefficient of the] middle term, being divided by twice the [coefficient of the] square is the value. (Brahmasphutasiddhanta (Colebrook translation, 1817, page 346)[2] " This is equivalent to: :The Bakhshali Manuscript dated to have been written in India in the 7th century CE contained an algebraic formula for solving quadratic equations, as well as quadratic indeterminate equations (originally of type ax/c = y). Mohammad bin Musa Al-kwarismi (Persia, 9th century) developed a set of formulae that worked for positive solutions. Abraham bar Hiyya Ha-Nasi (also known by the Latin name Savasorda) introduced the complete solution to Europe in his book Liber embadorum in the 12th century. Bhāskara II (1114-1185), an Indian mathematician-astronomer, gave the first general solution to the quadratic equation with two roots.[3] The writing of the Chinese mathematician Yang Hui (1238-1298 AD) represents the first in which quadratic equations with negative coefficients of 'x' appear, although he attributes this to the earlier Liu Yi.
It is not possible to list either all composite or all prime numbers as there are an infinite amount of both.See the related question for a list of primes. Any number over one that's not on the lists linked there are composites.4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 164, 165, 166, 168, 169, 170, 171, 172, 174, 175, 176, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 194, 195, 196, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 224, 225, 226, 228, 230, 231, 232, 234, 235, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 264, 265, 266, 267, 268, 270, 272, 273, 274, 275, 276, 278, 279, 280, 282, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 312, 314, 315, 316, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 350, 351, 352, 354, 355, 356, 357, 358, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 374, 375, 376, 377, 378, 380, 381, 382, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 398, 399, 400, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 444, 445, 446, 447, 448, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 462, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 493, 494, 495, 496, 497, 498, 500, 501, 502, 504, 505, 506, 507, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 546, 548, 549, 550, 551, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 570, 572, 573, 574, 575, 576, 578, 579, 580, 581, 582, 583, 584, 585, 586, 588, 589, 590, 591, 592, 594, 595, 596, 597, 598, 600, 602, 603, 604, 605, 606, 608, 609, 610, 611, 612, 614, 615, 616, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 706, 707, 708, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 728, 729, 730, 731, 732, 734, 735, 736, 737, 738, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 755, 756, 758, 759, 760, 762, 763, 764, 765, 766, 767, 768, 770, 771, 772, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 824, 825, 826, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 854, 855, 856, 858, 860, 861, 862, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 878, 879, 880, 882, 884, 885, 886, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 908, 909, 910, 912, 913, 914, 915, 916, 917, 918, 920, 921, 922, 923, 924, 925, 926, 927, 928, 930, 931, 932, 933, 934, 935, 936, 938, 939, 940, 942, 943, 944, 945, 946, 948, 949, 950, 951, 952, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 968, 969, 970, 972, 973, 974, 975, 976, 978, 979, 980, 981, 982, 984, 985, 986, 987, 988, 989, 990, 992, 993, 994, 995, 996, 998, 999 and 1000 are composite.
Oh, dude, a composite number is a number that has more than two factors, like 4, 6, or 12. So, if you want a chart of composite numbers between 1-1000, you'd basically be listing out all the numbers that aren't prime. That's like a lot of numbers, man. You might need a whole scroll for that one.