answersLogoWhite

0

The Babylonians, as early as 1800 BC (displayed on Old Babylonian clay tablets) could solve a pair of simultaneous equations of the form: : which are equivalent to the equation:[1] : The original pair of equations were solved as follows: # Form # Form # Form # Form # Find by inspection of the values in (1) and (4).[2] In the Sulba Sutras in ancient India circa 8th century BCE quadratic equations of the form ax2 = c and ax2 + bx = c were explored using geometric methods. Babylonian mathematicians from circa 400 BCE and Chinese mathematicians from circa 200 BCE used the method of completing the square to solve quadratic equations with positive roots, but did not have a general formula. Euclid, the Greek mathematician, produced a more abstract geometrical method around 300 BCE. In 628 CE, Brahmagupta gave the first explicit (although still not completely general) solution of the quadratic equation: : " To the absolute number multiplied by four times the [coefficient of the] square, add the square of the [coefficient of the] middle term; the square root of the same, less the [coefficient of the] middle term, being divided by twice the [coefficient of the] square is the value. (Brahmasphutasiddhanta (Colebrook translation, 1817, page 346)[2] " This is equivalent to: :

The Bakhshali Manuscript dated to have been written in India in the 7th century CE contained an algebraic formula for solving quadratic equations, as well as quadratic indeterminate equations (originally of type ax/c = y). Mohammad bin Musa Al-kwarismi (Persia, 9th century) developed a set of formulae that worked for positive solutions. Abraham bar Hiyya Ha-Nasi (also known by the Latin name Savasorda) introduced the complete solution to Europe in his book Liber embadorum in the 12th century. Bhāskara II (1114-1185), an Indian mathematician-astronomer, gave the first general solution to the quadratic equation with two roots.[3] The writing of the Chinese mathematician Yang Hui (1238-1298 AD) represents the first in which quadratic equations with negative coefficients of 'x' appear, although he attributes this to the earlier Liu Yi. The Babylonians, as early as 1800 BC (displayed on Old Babylonian clay tablets) could solve a pair of simultaneous equations of the form: : which are equivalent to the equation:[1] : The original pair of equations were solved as follows: # Form # Form # Form # Form # Find by inspection of the values in (1) and (4).[2] In the Sulba Sutras in ancient India circa 8th century BCE quadratic equations of the form ax2 = c and ax2 + bx = c were explored using geometric methods. Babylonian mathematicians from circa 400 BCE and Chinese mathematicians from circa 200 BCE used the method of completing the square to solve quadratic equations with positive roots, but did not have a general formula. Euclid, the Greek mathematician, produced a more abstract geometrical method around 300 BCE. In 628 CE, Brahmagupta gave the first explicit (although still not completely general) solution of the quadratic equation: : " To the absolute number multiplied by four times the [coefficient of the] square, add the square of the [coefficient of the] middle term; the square root of the same, less the [coefficient of the] middle term, being divided by twice the [coefficient of the] square is the value. (Brahmasphutasiddhanta (Colebrook translation, 1817, page 346)[2] " This is equivalent to: :

The Bakhshali Manuscript dated to have been written in India in the 7th century CE contained an algebraic formula for solving quadratic equations, as well as quadratic indeterminate equations (originally of type ax/c = y). Mohammad bin Musa Al-kwarismi (Persia, 9th century) developed a set of formulae that worked for positive solutions. Abraham bar Hiyya Ha-Nasi (also known by the Latin name Savasorda) introduced the complete solution to Europe in his book Liber embadorum in the 12th century. Bhāskara II (1114-1185), an Indian mathematician-astronomer, gave the first general solution to the quadratic equation with two roots.[3] The writing of the Chinese mathematician Yang Hui (1238-1298 AD) represents the first in which quadratic equations with negative coefficients of 'x' appear, although he attributes this to the earlier Liu Yi.

User Avatar

Wiki User

17y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
ReneRene
Change my mind. I dare you.
Chat with Rene

Add your answer:

Earn +20 pts
Q: Who found quadratic equation?
Write your answer...
Submit
Still have questions?
magnify glass
imp