Since the imaginary portion of a real number is zero, the complex conjugate of a real number is the same number.
Chat with our AI personalities
Aamir jamal; All real numbers are complex numbers with 0 as its imaginary part.A real number is self-conjugate. e.g;a+0i self conjugate =a-0i i=iota
"Conjugate" usually means that in one of two parts, the sign is changed - as in a complex conjugate. If the second part is missing, the conjugate is the same as the original number - in this case, 100.
Yes. This can be verified by using a "generic" complex number, and multiplying it by its conjugate: (a + bi)(a - bi) = a2 -abi + abi + b2i2 = a2 - b2 Alternative proof: I'm going to use the * notation for complex conjugate. Any complex number w is real if and only if w=w*. Let z be a complex number. Let w = zz*. We want to prove that w*=w. This is what we get: w* = (zz*)* = z*z** (for any u and v, (uv)* = u* v*) = z*z = w
Yes. By definition, the complex conjugate of a+bi is a-bi and a+bi - (a - bi)= 2bi which is imaginary (or 0)
To get the conjugate simply reverse the sign of the complex part. Thus conj of 7-4i is 7+4i