Since the imaginary portion of a real number is zero, the complex conjugate of a real number is the same number.
Yes. By definition, the complex conjugate of a+bi is a-bi and a+bi - (a - bi)= 2bi which is imaginary (or 0)
To get the conjugate simply reverse the sign of the complex part. Thus conj of 7-4i is 7+4i
"Conjugate" usually means that in one of two parts, the sign is changed - as in a complex conjugate. If the second part is missing, the conjugate is the same as the original number - in this case, 100.
The complex conjugate of 2-3i is 2+3i.
Graphically, the conjugate of a complex number is its reflection on the real axis.
When a complex number is multiplied by its conjugate, the product is a real number and the imaginary number disappears.
The conjugate is 7-5i
Assuming that the question is in the context of complex number, the product of any real number with itself (its square) is a real number.
The conjugate is 7 - 3i is 7 + 3i.
For a complex number (a + bi), its conjugate is (a - bi). If the number is graphically plotted on the Complex Plane as [a,b], where the Real number is the horizontal component and Imaginary is vertical component, the Complex Conjugate is the point which is reflected across the real (horizontal) axis.
-9
The graph of a complex number and its conjugate in the complex plane are reflections of each other across the real axis. If a complex number is represented as z = a + bi, its conjugate z* is a - bi. This symmetry across the real axis is a property of the complex conjugate relationship.
The concept of conjugate is usually used in complex numbers. If your complex number is a + bi, then its conjugate is a - bi.
Yes they do, complex conjugate only flips the sign of the imaginary part.
-6i-8
If you have a complex function in the form "a+ib", the (complex) conjugate is "a-ib". "Conjugate" is usually a function that the original function must be multiplied by to achieve a real number.