The degree of the polynomial 2x + 5 is 1.
The highest power of x is x1, i.e. 2x1 + 5x0, hence the designation of first degree.
2st4 + s2t2 - 9s5t + 21 The degree of a polynomial with more than one variable is the largest sum of the powers in any single term. So the degree of the given polynomial is 6 (-9s5t1; 5 + 1).
(2x + 5)/(3x + 2); √(x² - 2x + 3) a
Polynomials can be classified based on the number of terms they contain. A polynomial with one term is called a monomial, such as 5x or -2y^2. A polynomial with two terms is called a binomial, like 3x + 2 or 4y - 7. A polynomial with three terms is called a trinomial, for example, 2x^2 + 5x - 3. Polynomials with more than three terms are simply referred to as polynomials.
The degree of a polynomial is the highest degree of its terms.The degree of a term is the sum of the exponents of the variables.7x3y2 + 15xy6 + 23x2y2The degree of the first term is 5.The degree of the second term is 7.The degree of the third term is 4.The degree of the polynomial is 7.
5
The x^5 at the beginning makes the degree of the polynomial 5.
It is 6x(2x+5) when factored
The degree of a polynomial is identified by determining the highest exponent of the variable in the polynomial's expression. For example, in the polynomial (2x^3 + 4x^2 - x + 5), the highest exponent is 3, so the degree is 3. If the polynomial is a constant (like 5), its degree is 0, and if it's the zero polynomial, it's often considered to have no degree.
12x2 + 20x - 25 IS a polynomial that factors into (2x + 5)(6x - 5)
(x + 7)(x - 5)
The largest exponent in a polynomial is referred to as the polynomial's degree. It indicates the highest power of the variable in the expression. For example, in the polynomial (4x^3 + 2x^2 - x + 5), the degree is 3, as the term (4x^3) has the highest exponent. The degree of a polynomial provides insight into its behavior and the number of possible roots.
Assuming that he quadratic is 2x^2 + x - 15, the quotient is 2x - 5.
The degree of the polynomial (7x + 5) is 1. This is because the highest exponent of the variable (x) in the expression is 1. The term (7x) is the only term that contributes to the degree, while (5) is a constant term with a degree of 0.
(x + 1)(2x - 5)
2st4 + s2t2 - 9s5t + 21 The degree of a polynomial with more than one variable is the largest sum of the powers in any single term. So the degree of the given polynomial is 6 (-9s5t1; 5 + 1).
Type your answer here... (2x + 5)(4x - 7)
(2x + 5)(2x - 5)