The derivative is 1/(1 + cosx)
The derivative of x divided by 3 is 1/3. This can be found using the power rule of differentiation, where the derivative of x^n is nx^(n-1). In this case, x can be written as x^1, so the derivative is 1(1/3)*x^(1-1) = 1/3.
f(x)=xln(x) this function is treated as u*v u=x v=ln(x) The derivative of a product is f'(x)=u*v'+v*u' plugging the values back in you get: f'(x)=(x*dlnx/x)+(ln*dx/dx) The derivative of lnx=1/x x=u dlnu/dx=(1/u)*(du/dx) dx/dx=1 x=u dun/dx=nun-1 dx1/dx=1*x1-1 = x0=1 f'(x)=x*(1/x)+lnx*1 f'(x)=1+lnx Now for the second derivative f''(x)=d1/dx+dlnx/dx the derivative of a constant, such as 1, is 0 and knowing that the derivative of lnx=1/x you get f''(x)=(1/x)
(1/2(x^-1/2))/x
The partial derivative in relation to x: dz/dx=-y The partial derivative in relation to y: dz/dy= x If its a equation where a constant 'c' is set equal to the equation c = x - y, the derivative is 0 = 1 - dy/dx, so dy/dx = 1
1/x = x-1d/dx(x-1) = -x-2 = -1/x2
The derivative of ln x is 1/x The derivative of 2ln x is 2(1/x) = 2/x
the derivative of 1x would be 1 the derivative of x to the power of 1 would be 1. the derivative of x+1 would be 1 the derivative of x-1 would be 1 im not sure what you are asking, but however you put it, it's 1.
the derivative of ln x = x'/x; the derivative of 1 is 0 so the answer is 500(1/x)+0 = 500/x
The derivative is 1/(1 + cosx)
4/x can be written as 4x-1 (the power of negative 1 means it is the denominator of the fraction) 4*-1 = -4 Therefore, the derivative is -4x-2
X/1 is just X. so (1/2)X2 + C or X2/2 + C
x^0 = 1 for all x. The derivative of 1 is always zero.
The derivative of tan(x) is sec2(x).(Which is the same as 1/cos2(x).
The derivative of cot(x) is -csc2(x).(Which is the same as -1/sin2(x).)
sqrt(x) = x^(1/2) The derivative is (1 / 2) * x^(-1 / 2) = 1 / (2 * x^(1 / 2)) = 1 / (2 * sqrt(x))
Derivative of lnx= (1/x)*(derivative of x) example: Find derivative of ln2x d(ln2x)/dx = (1/2x)*d(2x)/dx = (1/2x)*2===>1/x When the problem is like ln2x^2 or ln-square root of x...., the answer won't come out in form of 1/x.