answersLogoWhite

0

77

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Algebra

What is the definition of a Hermitian matrix?

Hermitian matrix defined:If a square matrix, A, is equal to its conjugate transpose, A†, then A is a Hermitian matrix.Notes:1. The main diagonal elements of a Hermitian matrix must be real.2. The cross elements of a Hermitian matrix are complex numbers having equal real part values, and equal-in-magnitude-but-opposite-in-sign imaginary parts.


What is the definition of a skew-Hermitian matrix?

Skew-Hermitian matrix defined:If the conjugate transpose, A†, of a square matrix, A, is equal to its negative, -A, then A is a skew-Hermitian matrix.Notes:1. The main diagonal elements of a skew-Hermitian matrix must be purely imaginary, including zero.2. The cross elements of a skew-Hermitian matrix are complex numbers having equal imaginary part values, and equal-in-magnitude-but-opposite-in-sign real parts.


Is every unitary matrix hermitian?

Absolutely not. They are rather quite different: hermitian matrices usually change the norm of vector while unitary ones do not (you can convince yourself by taking the spectral decomposition: eigenvalues of unitary operators are phase factors while an hermitian matrix has real numbers as eigenvalues so they modify the norm of vectors). So unitary matrices are good "maps" whiule hermitian ones are not. If you think about it a little bit you will be able to demonstrate the following: for every Hilbert space except C^2 a unitary matrix cannot be hermitian and vice versa. For the particular case H=C^2 this is not true (e.g. Pauli matrices are hermitian and unitary).


What is idempotent matrix?

An idempotent matrix is a matrix which gives the same matrix if we multiply with the same. in simple words,square of the matrix is equal to the same matrix. if M is our matrix,then MM=M. then M is a idempotent matrix.


What is a reduced matrix?

Reduced matrix is a matrix where the elements of the matrix is reduced by eliminating the elements in the row which its aim is to make an identity matrix.

Related Questions

What is the definition of a Hermitian matrix?

Hermitian matrix defined:If a square matrix, A, is equal to its conjugate transpose, A†, then A is a Hermitian matrix.Notes:1. The main diagonal elements of a Hermitian matrix must be real.2. The cross elements of a Hermitian matrix are complex numbers having equal real part values, and equal-in-magnitude-but-opposite-in-sign imaginary parts.


What is the definition of a skew-Hermitian matrix?

Skew-Hermitian matrix defined:If the conjugate transpose, A†, of a square matrix, A, is equal to its negative, -A, then A is a skew-Hermitian matrix.Notes:1. The main diagonal elements of a skew-Hermitian matrix must be purely imaginary, including zero.2. The cross elements of a skew-Hermitian matrix are complex numbers having equal imaginary part values, and equal-in-magnitude-but-opposite-in-sign real parts.


What is the relationship between a matrix and its Hermitian conjugate?

The relationship between a matrix and its Hermitian conjugate is that the Hermitian conjugate of a matrix is obtained by taking the complex conjugate of each element of the matrix and then transposing it. This relationship is important in linear algebra and quantum mechanics for various calculations and properties of matrices.


What is harmitian matrix?

Hermitian matrix (please note spelling): a square matrix with complex elements that is equal to its conjugate transpose.


Is every unitary matrix hermitian?

Absolutely not. They are rather quite different: hermitian matrices usually change the norm of vector while unitary ones do not (you can convince yourself by taking the spectral decomposition: eigenvalues of unitary operators are phase factors while an hermitian matrix has real numbers as eigenvalues so they modify the norm of vectors). So unitary matrices are good "maps" whiule hermitian ones are not. If you think about it a little bit you will be able to demonstrate the following: for every Hilbert space except C^2 a unitary matrix cannot be hermitian and vice versa. For the particular case H=C^2 this is not true (e.g. Pauli matrices are hermitian and unitary).


Can a Hermitian Matrix possess Complex Eigenvectors?

Yes. Simple example: a=(1 i) (-i 1) The eigenvalues of the Hermitean matrix a are 0 and 2 and the corresponding eigenvectors are (i -1) and (i 1). A Hermitean matrix always has real eigenvalues, but it can have complex eigenvectors.


What is density matrix in quantum mechanics?

In quantum mechanics, the density matrix is a mathematical representation of the state of a quantum system that is used to describe mixtures of quantum states or states that have uncertainty. It provides a way to calculate the average values of observables and predict the outcomes of measurements on the system.


What is nullity matrix?

nullity of A is the dimension of null space of A.


Can a 3 X 5 matrix be multiplied by a 3 X 5 matrix?

No it can't !!!Matrix property: A matrix A of dimension [nxm] can be multiplied by another B of dimension [ txs] m=t.m=t => there exist a C = A.B of dimension [nxs].Observe that given [3x5] and [3x5], 5!=3(not equal to) so you can't!


Is the momentum operator Hermitian in quantum mechanics?

Yes, the momentum operator is Hermitian in quantum mechanics.


Is it true that the momentum operator shows momentum operator is hermitian?

Yes, it is true that the momentum operator is Hermitian.


How can one determine if an operator is Hermitian?

To determine if an operator is Hermitian, one must check if the operator is equal to its own conjugate transpose. This means that the operator's adjoint is equal to the operator itself. If this condition is met, then the operator is Hermitian.