answersLogoWhite

0

Yes. Simple example:

a=(1 i)

(-i 1)

The eigenvalues of the Hermitean matrix a are 0 and 2 and the corresponding eigenvectors are (i -1) and (i 1).

A Hermitean matrix always has real eigenvalues, but it can have complex eigenvectors.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: Can a Hermitian Matrix possess Complex Eigenvectors?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is harmitian matrix?

Hermitian matrix (please note spelling): a square matrix with complex elements that is equal to its conjugate transpose.


What is the eigen value?

This is the definition of eigenvectors and eigenvalues according to Wikipedia:Specifically, a non-zero column vector v is a (right) eigenvector of a matrix A if (and only if) there exists a number λ such that Av = λv. The number λ is called the eigenvalue corresponding to that vector. The set of all eigenvectors of a matrix, each paired with its corresponding eigenvalue, is called the eigensystemof that matrix


What are eigenvalues and eigenvectors?

An eigenvector is a vector which, when transformed by a given matrix, is merely multiplied by a scalar constant; its direction isn't changed. An eigenvalue, in this context, is the factor by which the eigenvector is multiplied when transformed.


What are complex matrices?

A complex number has an imaginary component and is of the form a + bi. (And i is the square root of -1 in this application.)A matrix is a table of numbers. For example, we might give the current (x,y,z) coordinates of a dozen asteroids using a 12 * 3 matrix.A complex matrix is a matrix of complex numbers.


What is the definition of unitary matrix?

It is the conjugate transpose of the matrix. Of course the conjugate parts only matters with complex entries. So here is a definition:A unitary matrix is a square matrix U whose entries are complex numbers and whose inverse is equal to its conjugate transpose U*. This means thatU*U = UU* = I. Where I is the identity matrix.