It is called the directrix.
All of the points on a parabola define a parabola. However, the vertex is the point in which the y value is only used for one point on the parabola.
i think its the vertex.
To determine the equation of a parabola with a vertex at the point (5, -3), we can use the vertex form of a parabola's equation: (y = a(x - h)^2 + k), where (h, k) is the vertex. Substituting in the vertex coordinates, we have (y = a(x - 5)^2 - 3). The value of "a" will determine the direction and width of the parabola, but any equation in this form with varying "a" values could represent the parabola.
First we need to find the equation of the tangent line to the parabola at (2, 20).Step 1. Take the derivative of the function of the parabola.Let f(x) = 5x^2f'(x) = 10xStep 2. Find the slope of the tangent line at x = 2. Evaluate f'(2).f'(2) = 2 x 10 = 20Step 3. Using the slope, m = 20, and the point (2, 20), find the equation of the tangent line at that point. Use the point-slope form of a line(y - y1) = m(x - x1)(y - 20) = 20(x - 2)y - 20 = 20x - 40 add 20 to both sidesy = 20x - 20Step 4. Find the points of intersections of y = 5x^2 and y = 20x - 205x^2 = 20x - 20 Divide by 5 to both sidesx^2 = 4x - 4 subtract 4x and add 4 to both sidesx^2 - 4x + 4 = 0 factor(x - 2)^2= 0x = 2Step 5. Find the intersection of the tangent line with x-axis.y = 20x - 20y = 020x - 20 = 0x = 1Since the vertex of the parabola is (0, 0) and the intersection of the tangent line with parabola is (2,20) we use the interval [0, 2] to fin the required area.Step 6. IntegrateA = ∫ [(5x^2)] dx, where the below boundary is 0, and the upper boundary is 2 minus A= ∫ (20x + 20)] dx from 1 to 2= 10/3
no,you use a data when doing a vote. a line plot is for fractions or time line.
directrix
All of the points on a parabola define a parabola. However, the vertex is the point in which the y value is only used for one point on the parabola.
i think its the vertex.
it's called the focus
One career that might use a parabola is a mathematics teacher. Geometry teachers might also use parabolas. A parabola is a line consisting of points that are connected and spaced unilaterally.
The parabola is a type of conic section, . The problem is that this is not a descriptive as the if the word "parabola" is used. The reason is that it is not the only geometric shape that can be derived by slicing a cone with a plane. Use the link below to see a drawing and learn more.
A parabola is a line with one curve, that usually crosses the x-axis of a graph twice (unless the roots are imaginary). To find the roots, set y to zero and use the quadratic formula (-b±√b^2-4AC/2A)
Yes.
The line that forms the edge of a figure is an edge line. Which forms the figure the has been drawn. You use this line to define a drawing or a figure.
1st we find the intersection point of the straight line y=x & y=x^2, which are (0,0) & (1,1). after that we can use multiple integral with the 1st limit of y co-ordinate 0 to 1 & x limits x=y to x=square root(x). or simply we 1st calculate the area between the parabola & x-axis & the area between the straight line & x-axis in the interval 0 to 1. & after that we subtract the area of parabola by area of straight line.
A parabola is a graph of a 2nd degree polynomial function. Two graph a parabola, you must factor the polynomial equation and solve for the roots and the vertex. If factoring doesn't work, use the quadratic equation.
Descartes used the parabola to illustrate algebraic equations. He put these equations on a visible plane using the Cartesian coordinate system and they sometimes took the shape of a "u" curve, or a parabola.