All of the points on a parabola define a parabola.
However, the vertex is the point in which the y value is only used for one point on the parabola.
Chat with our AI personalities
i think its the vertex.
It is called the directrix.
The ORIGIN . #NB THe coordinates are writeen as (0,0) . NOT 00. Note the use of brackets and the commas.
First we need to find the equation of the tangent line to the parabola at (2, 20).Step 1. Take the derivative of the function of the parabola.Let f(x) = 5x^2f'(x) = 10xStep 2. Find the slope of the tangent line at x = 2. Evaluate f'(2).f'(2) = 2 x 10 = 20Step 3. Using the slope, m = 20, and the point (2, 20), find the equation of the tangent line at that point. Use the point-slope form of a line(y - y1) = m(x - x1)(y - 20) = 20(x - 2)y - 20 = 20x - 40 add 20 to both sidesy = 20x - 20Step 4. Find the points of intersections of y = 5x^2 and y = 20x - 205x^2 = 20x - 20 Divide by 5 to both sidesx^2 = 4x - 4 subtract 4x and add 4 to both sidesx^2 - 4x + 4 = 0 factor(x - 2)^2= 0x = 2Step 5. Find the intersection of the tangent line with x-axis.y = 20x - 20y = 020x - 20 = 0x = 1Since the vertex of the parabola is (0, 0) and the intersection of the tangent line with parabola is (2,20) we use the interval [0, 2] to fin the required area.Step 6. IntegrateA = ∫ [(5x^2)] dx, where the below boundary is 0, and the upper boundary is 2 minus A= ∫ (20x + 20)] dx from 1 to 2= 10/3
The standard form of quadratic function is: f(x) = a(x - h)^2 + k, a is different than 0 The graph of f is a parabola whose vertex it is the point (h, k). If a > 0, the parabola opens upward; if a < 0, the parabola opens downward. Furthermore, if |a| is small, the parabola opens more flatly than if |a| is large. It is a general procedure for graphing parabolas whose equations are in standard form: Example 1: Graph the the quadratic function f(x) = -2(x - 3)^2 + 8 Solution: Standard form: f(x) = a(x - h)^2 + k Given function: f(x) = -2(x - 3) + 8 From the give function we have: a= -2; h= 3; k = 8 Step 1. Determine how the parabola opens. Note that a = -2. Since a < 0, the parabola is open downward. Step 2. Find the vertex. The vertex of parabola is at (h, k). because h = 3 and k = 8, the parabola has its vertex at (3, 8). Step 3. Find the x-intercepts by solving f(x) = 0. Replace f(x) with 0 at f(x) = -2(x - 3)^2 + 8 and solve for x 0 = -2(x - 3)^2 + 8 2(x - 3)^2 = 8 (x- 3)^2 = 4 x - 3 = square radical 4 x - 3 = 2 or x -3 = -2 x = 5 or x = 1 The x- intercepts are 1 and 5. Thus the parabola passes through the points (1, 0) and (5, 0), this means that parabola intercepts the x-axis at 1 and 5. Step 4. Find the y-intercept by computing f(0). Replace x with 0 in f(x) = _2(x - 3)^2 + 8 f(0) = -2(0 - 3)^2 + 8 f(0) = -2(9) + 8 f(0) = -10 The y-intercept is -10. Thus the parabola passes through the point (0, -10), this means that parabola intercepts the y-axis at -10. Step 5. Graph the parabola. With a vertex at (3, 8), x-intercepts at 1 and 5, and a y-intercept at -10. The axis of symmetry is the vertical line whose equation is x = 3. Example 2: Graphing a quadratic function in the form f(x) = ax^2 + bx + c Graph the quadratic function f(x) = -x^2 - 2x + 1 Solution: Here a = -1, b = -2, and c = 1 Step 1. Determine how the parabola opens. Since a = 1, a < 0, the parabola opens downward. Step 2. Find the vertex. We know that x-coordinate of the vertex is x = -b/2a. Substitute a with -1 and b with -2 into the equation for the x-coordinate: x = - b/2a x= -(-2)/(2)(-1) x = -1, so the x-coordinate of the vertex is -1, and the y-coordinate of the vertex will be f(-1). thus the vertex is at ( -1, f(-1) ) f(x) = -x^2 - 2x +1 f(-1) = -(-1)^2 - 2(-1) + 1 f(-1) = -1 + 2 + 1 f(-1) = 2 So the vertex of the parabola is (-1, 2) Step 3. Find the x-intercepts by solving f(x) = o f(x) = -x^2 -2x + 1 0 = -x^2- 2x + 1 We can't solve this equation by factoring, so we use the quadratic formula to solve it. we get to solution: One solution is x = -2.4 and the other solution is 0.4 (approximately). Thus the x-intercepts are approximately -2.4 and 0.4. The parabola passes through ( -2.4, 0) and (0.4, 0) Step 4. Find the y-intercept by computing f(0). f(x) = -x^2 - 2x + 1 f(0) = -(0)^2 - 2(0) + 1 f(0) = 1 The y-intercept is 1. The parabola passes through (0, 1). Step 5. graph the parabola with vertex at (-1, 2), x-intercepts approximately at -2.4 and 0.4, and y -intercept at 1. The line of symmetry is the vertical line with equation x= -1.