answersLogoWhite

0

All of the points on a parabola define a parabola.

However, the vertex is the point in which the y value is only used for one point on the parabola.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
BeauBeau
You're doing better than you think!
Chat with Beau
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: What is the name of the point you use to define a parabola?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What is the name of the point that use to define a parabola?

i think its the vertex.


What is the name of a line that you use to define a parabola?

It is called the directrix.


What is the name for a point on a coordinate plane that has the coordinates 00?

The ORIGIN . #NB THe coordinates are writeen as (0,0) . NOT 00. Note the use of brackets and the commas.


Find the area S of the region bounded by the parabola y 5x2 the tangent line to this parabola at 2 20 and the x-axis?

First we need to find the equation of the tangent line to the parabola at (2, 20).Step 1. Take the derivative of the function of the parabola.Let f(x) = 5x^2f'(x) = 10xStep 2. Find the slope of the tangent line at x = 2. Evaluate f'(2).f'(2) = 2 x 10 = 20Step 3. Using the slope, m = 20, and the point (2, 20), find the equation of the tangent line at that point. Use the point-slope form of a line(y - y1) = m(x - x1)(y - 20) = 20(x - 2)y - 20 = 20x - 40 add 20 to both sidesy = 20x - 20Step 4. Find the points of intersections of y = 5x^2 and y = 20x - 205x^2 = 20x - 20 Divide by 5 to both sidesx^2 = 4x - 4 subtract 4x and add 4 to both sidesx^2 - 4x + 4 = 0 factor(x - 2)^2= 0x = 2Step 5. Find the intersection of the tangent line with x-axis.y = 20x - 20y = 020x - 20 = 0x = 1Since the vertex of the parabola is (0, 0) and the intersection of the tangent line with parabola is (2,20) we use the interval [0, 2] to fin the required area.Step 6. IntegrateA = ∫ [(5x^2)] dx, where the below boundary is 0, and the upper boundary is 2 minus A= ∫ (20x + 20)] dx from 1 to 2= 10/3


How do you graph quadratic functions in vertex form?

The standard form of quadratic function is: f(x) = a(x - h)^2 + k, a is different than 0 The graph of f is a parabola whose vertex it is the point (h, k). If a > 0, the parabola opens upward; if a < 0, the parabola opens downward. Furthermore, if |a| is small, the parabola opens more flatly than if |a| is large. It is a general procedure for graphing parabolas whose equations are in standard form: Example 1: Graph the the quadratic function f(x) = -2(x - 3)^2 + 8 Solution: Standard form: f(x) = a(x - h)^2 + k Given function: f(x) = -2(x - 3) + 8 From the give function we have: a= -2; h= 3; k = 8 Step 1. Determine how the parabola opens. Note that a = -2. Since a < 0, the parabola is open downward. Step 2. Find the vertex. The vertex of parabola is at (h, k). because h = 3 and k = 8, the parabola has its vertex at (3, 8). Step 3. Find the x-intercepts by solving f(x) = 0. Replace f(x) with 0 at f(x) = -2(x - 3)^2 + 8 and solve for x 0 = -2(x - 3)^2 + 8 2(x - 3)^2 = 8 (x- 3)^2 = 4 x - 3 = square radical 4 x - 3 = 2 or x -3 = -2 x = 5 or x = 1 The x- intercepts are 1 and 5. Thus the parabola passes through the points (1, 0) and (5, 0), this means that parabola intercepts the x-axis at 1 and 5. Step 4. Find the y-intercept by computing f(0). Replace x with 0 in f(x) = _2(x - 3)^2 + 8 f(0) = -2(0 - 3)^2 + 8 f(0) = -2(9) + 8 f(0) = -10 The y-intercept is -10. Thus the parabola passes through the point (0, -10), this means that parabola intercepts the y-axis at -10. Step 5. Graph the parabola. With a vertex at (3, 8), x-intercepts at 1 and 5, and a y-intercept at -10. The axis of symmetry is the vertical line whose equation is x = 3. Example 2: Graphing a quadratic function in the form f(x) = ax^2 + bx + c Graph the quadratic function f(x) = -x^2 - 2x + 1 Solution: Here a = -1, b = -2, and c = 1 Step 1. Determine how the parabola opens. Since a = 1, a < 0, the parabola opens downward. Step 2. Find the vertex. We know that x-coordinate of the vertex is x = -b/2a. Substitute a with -1 and b with -2 into the equation for the x-coordinate: x = - b/2a x= -(-2)/(2)(-1) x = -1, so the x-coordinate of the vertex is -1, and the y-coordinate of the vertex will be f(-1). thus the vertex is at ( -1, f(-1) ) f(x) = -x^2 - 2x +1 f(-1) = -(-1)^2 - 2(-1) + 1 f(-1) = -1 + 2 + 1 f(-1) = 2 So the vertex of the parabola is (-1, 2) Step 3. Find the x-intercepts by solving f(x) = o f(x) = -x^2 -2x + 1 0 = -x^2- 2x + 1 We can't solve this equation by factoring, so we use the quadratic formula to solve it. we get to solution: One solution is x = -2.4 and the other solution is 0.4 (approximately). Thus the x-intercepts are approximately -2.4 and 0.4. The parabola passes through ( -2.4, 0) and (0.4, 0) Step 4. Find the y-intercept by computing f(0). f(x) = -x^2 - 2x + 1 f(0) = -(0)^2 - 2(0) + 1 f(0) = 1 The y-intercept is 1. The parabola passes through (0, 1). Step 5. graph the parabola with vertex at (-1, 2), x-intercepts approximately at -2.4 and 0.4, and y -intercept at 1. The line of symmetry is the vertical line with equation x= -1.